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A Cartesian grid method for computing flows with complex immersed, moving
boundaries is presented. The flow is computed on a fixed Cartesian mesh and the
solid boundaries are allowed to move freely through the mesh. A mixed Eulerian—
Lagrangian framework is employed, which allows us to treat the immersed moving
boundary as a sharp interface. The incompressible Navier—Stokes equations are dis-
cretized using a second-order-accurate finite-volume technique, and a second-order-
accurate fractional-step scheme is employed for time advancement. The fractional-
step method and associated boundary conditions are formulated in a manner that
properly accounts for the boundary motion. A unique problem with sharp interface
methods is the temporal discretization of what are termed “freshly cleared” cells, i.e.,
cells that are inside the solid at one time step and emerge into the fluid at the next time
step. A simple and consistent remedy for this problem is also presented. The solution
of the pressure Poisson equation is usually the most time-consuming step in a frac-
tional step scheme and this is even more so for moving boundary problems where the
flow domain changes constantly. A multigrid method is presented and is shown to
accelerate the convergence significantly even in the presence of complex immersed
boundaries. The methodology is validated by comparing it with experimental data
on two cases: (1) the flow in a channel with a moving indentation on one wall and
(2) vortex shedding from a cylinder oscillating in a uniform free-stream. Finally, the
application of the current method to a more complicated moving boundary situation
is also demonstrated by computing the flow inside a diaphragm-driven micropump
with moving valves. © 2001 Elsevier Science
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1. INTRODUCTION

In recent years there has been a renewal of interest in numerical methods that com
flowfields with complex stationary and/or moving immersed boundaries on fixed Cartes
grids. The obvious advantage of these methods over the conventional body-conformal
proach is that irrespective of the geometric complexity of the immersed boundaries,
computational mesh remains unchanged. Cartesian grid methods free the underlying s
tured computational mesh from the task of adapting to the moving boundary, thus allow
large changes in the geometry due to boundary evolution.

Methods that simulate flows with complex immersed boundaries on Cartesian grids
be broadly classified into two categories:

1. Inrepresenting the effect of theimmersed boundary on the surrounding fluid phase
immersed boundary is represented as a “diffuse” interface of finite thickness. The thickr
of the boundary is usually on the order of the local grid spacing. This category of methc
includes most methods that employ body and/or surface forces and/or mass sources in
to represent the effect of the immersed boundary [3, 14, 15, 36, 49, 50] as well as mett
which use the volume-of-fluid [6] and phase-field [9, 51, 55] approaches.

2. The boundary is tracked as a sharp interface, either explicitly as curves or as level
on fixed meshes. The communication between the moving boundary and the flow solve
usually accomplished directly by modifying the computational stencil near the immers
boundary [2, 4, 11, 18, 27, 35, 37, 47, 58].

The methods in the second category share an important property with conventional bc
conformal methods in that the boundary is represented as a sharp interface irrespecti
the grid resolution. In these sharp interface methods, the interface clearly demarcates
regions of the computational domain and retains the jumps in material and flow quantit
as sharp discontinuities. On the other hand, in diffuse interface methods, the boundal
eventually treated as a special region in a single fluid, which occupies the entire com
tational domain, and the discontinuities across the interface are smoothed. The influe
of the boundary in these methods is transmitted to the fluid through source terms in
transport equations. Typically, this boundary effect is distributed over a few mesh cells |
surface forces are converted to volume forces [6], and jump discontinuities are enfor
only in an integral sense. An additional issue present in diffuse interface methods is
presence of parasitic flows, which can be problematic when the source term representin
interfacial effects (such as capillary forces) becomes stiff [56]. In sharp interface methe
on the other hand, the effect of the boundary is accounted for through direct applicatior
the appropriate boundary condition(s) on the immersed boundary and parasitic flows
not created [27].

Itis important to make a distinction between the methodology used to track the bound
motion and that used to incorporate the influence of the boundary on the fluid phase. Tl
are diffuse interface methods that retain the diffuse nature of the interface both in tracking
boundary as well as in solving the flowfield, such as the volume-of-fluid [6] and phase-fit
methods [55]. These can be considered as purely Eulerian methods. The level-set me
[33]inwhichtheinterfaceistracked by advecting a distance function is one Eulerian track
method in which a sharp interface treatment can be devised for boundary representatic
solving the flow equations, as in Hat al. [17]. Thus, such level-set—based methods cal
be considered to be “mixed”; i.e., they possess the characteristics of Eulerian (for tracki
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as well as sharp interface (for boundary interaction with the flowfield) approaches. Th
are other mixed methods in which the boundary is tracked as a sharp, Lagrangian er
while it is treated as diffuse in accounting for the effect of the immersed boundary
the fluid phase. An example in this category is the immersed boundary method [36,
Thus, boundary tracking and boundary representation must be considered distinct issu
classifying methods for solving moving boundary problems. However, in order to quall
as a true sharp interface method, a method has to track the interface as a sharp entit
also treat it as such when discretizing the flow equations in the presence of the mo
immersed boundary.

Methods in all the aforementioned categories have been used successfully for simule
a variety of thermal transport and fluid flow problems including solidification [22, 24, 4.
48], bubble dynamics [42, 47, 49], cell mechanics [12, 23], fluid—structure interaction [4
and complex turbulent and transitional flows [15, 50]. Diffuse interface methods have b
the primary choice for solving flow problems with evolving fluid—fluid boundaries. Th
exception is the immersed interface method applied by Leveque and Li [27] for fluid—fiL
boundaries evolving in creeping flows. This method tracks theimmersed boundaries as s
interfaces and accounts explicitly for jump discontinuities at the immersed boundaries in
discretization of the elliptic equations. In the presence of immersed solid boundaries, wt
boundary layers form on the immersed boundaries, and for flows that are driven prima
by the boundary motion, it is especially important to minimize the discretization error ne
the boundaries. For such flows, sharp interface methods have an advantage since one s
of error, namely that incurred in boundary representation, is eliminated. Additionally, t
boundary conditions are applied exactly as in body-fitted grid formulations and thus th
is no spreading of the interface effects.

The advantage of representing the immersed boundary as a sharp interface in solidific:
problems has been clearly demonstrated in Udaykwtnalt [47] where a finite-difference,
sharp interface, Cartesian grid method was developed for simulating the evolution of so
fluid phase boundaries driven by diffusion of heat. Complex, dendritic crystal structul
were computed and a careful analysis of the errors accruing during the calculations
performed. It was demonstrated there that the field equations were computed to sec
order accuracy while the interface evolution was captured with first-order accuracy. Des
the use of a finite-difference formulation, which does not explicitly conserve fluxes,
was found that the interface dynamics was simulated in an accurate manner and this
attributed to the dominance of diffusion in the process and to the sharp representation o
interface. Following this, in Yet al.[58], a finite-volume-based, sharp interface Cartesial
grid method which was designed to simulate convection-dominated flows with compl
stationary, immersed boundaries was presented. The switch to a finite-volume technique
prompted by the need to compute accurately the transport of mass and momentum in
boundary layers that formed on the immersed boundaries in these flows. It was demonst
that the flow was computed to second-order-accuracy in space and the solution proce
was validated by simulating a number of different flows and comparing with availak
experimental and computational results.

In the method presented in this paper, the Cartesian grid method ef &k [58] is
extended in order to allow for the motion of the immersed boundaries. Thus, the spe
and temporal discretization scheme in the current method is for the most part, identice
that presented in Yet al. [58]. The moving boundary is represented as a sharp interfas
using an Eulerian—-Lagrangian approach and the interface tracking procedure is ado
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from Udaykumaret al. [48]. However, representation of a moving immersed boundar
as a sharp interface in these flow simulations leads to some unique problems in te
of accuracy, complexity, and conditioning of discrete operators, and these have to be
dressed in order to develop a method which is robust and accurate. Discussion of tt
issues and validation of the numerical results against experiments forms the subject of
paper.

The first issue that emerges is the proper implementation of the fractional-step met
and associated boundary conditions in the context of the current sharp interface methc
is found that the correct splitting of the Navier—Stokes equations for the current appro:
is similar to that which would be employed in a purely Lagrangian method. The pressi
boundary condition, which is required for the solution of the pressure Poisson equati
is also reformulated in a manner consistent with the Lagrangian nature of the interfe
One problem that is unique to all sharp interface methods is the appearance of what
be termed as “freshly cleared” cells. These are cells that were in the solid at one ti
step but emerge into the fluid at the next time step as a result of the boundary mot
These cells do not have any history in the fluid and time derivatives for these cells can
be constructed in a straightforward manner [5, 28]. This situation is not encounterec
Lagrangian methods since the grid is confined to the fluid region and moved as the bot
ary moves, so that no computational points lie inside the solid at any time. However,
Lagrangian methods, upon grid adaptation, computational points do change position,
the field is then projected from the old grid locations to the new. The information at the
newly introduced points is drawn from old computational points lying only in the fluic
The freshly cleared cell situation is also not encountered in diffuse interface methods si
there is no clear distinction between the cells on either side of the immersed boundary
all cells have a well-defined, continuous, albeit smoothened, time history. Thus, for sh
interface methods, a systematic and consistent discretization procedure needs to be ¢
oped for such cells which change from solid to fluid; this will be discussed in the curre
paper.

This paper also addresses the issue of speedup of the pressure Poisson equation

solver in the presence of arbitrary moving boundaries on the fixed mesh.éhalg58]
a Line-SOR preconditioned BICGSTAB (biconjugate gradient stabilized) algorithm w:
used and was found to be adequate for complex stationary boundary problems. Howe
for moving boundary calculations, the convergence acceleration of this method was fo
to be inadequate. The multigrid method, which is most effective for speedup of the ellip
PPE, would seem a logical choice for the current structured grid solver. However, straight
ward implementation of the multigrid method requires the reconstruction of the immers
boundary at every coarse multigrid level, which can significantly increase the complex
of the multigrid scheme. We overcome this problem by using a volume—fraction approz
to discretize the Poisson equation at the coarse level, while retaining a sharp interface &
finest level.

The applications targeted with this method are wide-ranging and include fluid—struct
interaction, multiphase flows, solidification dynamics, and cell mechanics. However, in 1
current paper, the solver is validated by simulating two flows, both of which involve movir
solid boundaries. The computed results are then compared with available experimental
numerical data. In addition, a case with multiple moving solid boundaries is simulated
order to demonstrate the capabilities of the current numerical method.



SHARP INTERFACE CARTESIAN GRID METHOD 349

2. THE NUMERICAL METHOD

The key aspects of the algorithm include:

1. Afractional-step scheme [10, 13], which results in a fast solution of unsteady flov

2. Adoption of a compact interpolation scheme [58] near the moving immersed boul
aries, which allows us to retain second-order-accuracy and conservation property of
solver.

3. A full approximation storage multigrid technique [7, 52] with line-SOR smoothing
which substantially accelerates the convergence of the pressure Poisson equation (
with/without immersed boundaries in the domain.

These aspects are described in detail in the following sections.

2.1. Governing Equations and Flow Configuration

The schematic in Fig. 1 shows a solid with a curved boundary moving through a flu
which illustrates the typical flow problem of interest here. The equations solved are
incompressible Navier—Stokes equations. The nondimensionalized, integral form of th
equations is given by

/U~ﬁdS=0 (1)
S
0o [ . R 1
Stg/udv+/u _ / FT @
\Y S

wherel andp are the nondimensional velocity and pressure, respectively; Stand Re are
Strouhal number and Reynolds number, respectively, which are defined:asLS,iUo; and
Re= U,L /v, wherew is an imposed frequencl, the length scald), the velocity scale,
andv the kinematic viscosity. In the above equations, substtiphdS denote the volume
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FIG.1. (a)lllustration of a moving boundary cutting through a fixed mesh. Cells traversed by the interface
called interfacial cells and are trapezoidal in shape. Cells away from the interface are regular cells. (b) A rec
cell showing the cell-face nomenclature and cell-center and cell-face velocities.
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and surface of the control volume afds a unit vector normal to the surface of the control
volume. The above equations are to be solved with t) = (X, t) on the boundary of
the flow domain wheréi, (X, t) is the prescribed boundary velocity, including that at the
moving immersed boundary. The above equations with the moving immersed boundary
to be discretized and solved on a Cartesian mesh shown in Fig. 1. The discretizatiol
the above equations in the context of a stationary immersed boundary is described f
With this as the basis, the discretization scheme in the presence of moving boundarie
described subsequently.

2.2. Flow Solver with Stationary Immersed Boundaries

As the first step, the curved immersed boundary is represented using marker parti
which are connected by piecewise quadratic curves parameterized with respect to the
clengths. Details regarding interface representation, evaluation of derivatives along t
interface to obtain normals, curvatures, and so forth, have been presented in previous
pers [48, 58] and are not repeated here. Also described in earlier papers are details rega
the projection of the immersed boundary onto the underlying fixed Cartesian mesh. T
includes determining the intersection of the boundary with the mesh; identifying the ph:
(solid or fluid) of each cell; and determining procedures for obtaining a mosaic of conti
volumes, which are clearly demarcated by the immersed boundary. This results in the for
tion of control volumes adjacent to the immersed boundary that are trapezoidal in shap
shown in Fig. 1. Depending on the location and local orientation of the immersed bound:
trapezoidal cells of varying aspect ratio are formed. It should be pointed out that due to
cell-merging operation [58], the nominal aspect ratio of the trapezoidal cells is limited tc
range between 0.5 and 1.5, which is advantageous from the point of view of conditioning
the discrete operators. With the boundary-adjacent grid cells reconstructed in this mar
we now turn to the discretization of the governing Egs. (1) and (2) on this grid.

A two-step, mixed explicit—implicit fractional step scheme [31] is used for advancing tt
solution of the above equations in time. The Navier—Stokes equations are discretized u
a cell-centered, colocated (nonstaggered) arrangement [39, 59] of the primitive varial
(G, p). In addition to the cell-center velocities, which are denotedi bace-center veloc-
ities Uare also computed. In a manner similar to a fully staggered arrangement, only
component normal to the cell-face is computed and stored (see Fig. 1b). The face-ce
velocity is used for computing the volume flux from each cell in the current finite-volurr
discretization scheme. The advantage of separately computing the face-center velocitie
been discussed in the context of the current method in [58]. The solution is advanced fi
time levelt tot 4+ At through an intermediate advection—diffusion step where the mome
tum equations without the pressure gradientterms are first advanced in time. A second-c
Adams—Bashforth scheme is employed for the convective terms, and the diffusion terms
discretized using an implicit Crank—Nicolson scheme. This eliminates the viscous stabi
constraint, which can be quite severe in simulation of viscous flows. The discretized fo
of the advection—diffusion equation for each cell shown in Fig. 1 can therefore be written

0* — af 1 St oAttt a
St——AV =-2> [BT'WU" Ap - U AD]AS
f
1 . t7 A
+mZ[Vu +VUu'l-A;ASy, 3)
f
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wherel* is the intermediate cell-center velocity and subscfipdenotes one face of the
control volume. This equation is solved with the final velocity imposed as the boundary c
dition; i.e.,U}(X) = U, (X, t + At). The intermediate face-center velocitiés are obtained
at this point by interpolating the intermediate cell-center velociifes

The advection—diffusion step is followed by the pressure—correction step in which
following integral equation is discretized:

-

Gt+at _ g .
St ————dvV=— [ vp*tidy. @)
At
\% \%

By requiring a divergence-free velocity field at the end of the time step the following ellipt
equation for pressure is obtained:

St >
VPt AsAS; = — ) U*-A;AS;. 5
2 p f A S At; FASE (5)

With stationary, nonporous boundaries, a homogeneous Neumann boundary conditiol
pressure results in a consistent approximation of the Navier—Stokes equations [43]. C
the pressure is obtained by solving Eq. (5), both the cell-center and face-center veloci
G andU, are updated separately as

L—jH-At — l—jt _ At (V pt+At)cc (6)

gHat = gt — At(vpttaty, @)

where subscriptsc andfc indicate evaluation at the cell-center and face-center location
respectively. Further discussion regarding the adoption of cell-center and face-centel
locities can be found in Zangt al. [59] and in the context of the present method in Ye
et al.[58].

The key element in the finite-volume discretization of Egs. (3)—(5) in the context
the current method is the evaluation of fluxes and derivatives at the faces of each cor
volume. These include momentum, mass, and diffusive fluxes and gradients of pres:s
A detailed discussion of this aspect, including validation of the accuracy of the soluti
procedure, has been presented ireYal.[58]. For the regular Cartesian cells away from the
immersed boundary, the fluxes and pressure gradients on the face centers can be com
to second-order accuracy by assuming a linear variation between adjoining cell cent
This is not the case for a trapezoidal boundary cell since the center of some of the f
of such a cell may not lie halfway between neighboring cell centers. This is seen fr
Figs. 2b and 2c, where the locations where fluxes are evaluated are indicated by the f
arrows. A linear approximation would not provide a second-order-accurate estimate
the gradients. Furthermore, some of the neighboring cell centers do not even lie on
same side of the immersed boundary and therefore cannot be used in the differen
procedure. Thus, a different approach is needed in order to discretize the equations in t
cells.

To maintain second-order-accurate discretization in the boundary cells [58], we em
a compact two-dimensional polynomial interpolating function which allows us to obta
the fluxes and gradients on the cell faces of the trapezoidal to second-order-accuracy
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FIG. 2. lllustration of stencils for evaluation of cell face fluxes. (a) Interfacial cell nomenclature showing flu
components required in the discrete form of the conservation lawspresents the flux (convective/diffusive) at
each cell face. (b) Stencil points for linear—quadratic interpolation to obtain thé&flaxdF.. (c) All the stencil
points used to calculate fluxes for the control volubhe

instance, for a typical trapezoidal cell shown in Fig. 2a the interpolating function for
generic variable has the form

¢ = C1XY? + Coy? + C3XY + CaY + CsX + Co. (8)

The unknown coefficients in this interpolant can be expressed in terms of surround
nodal and boundary values. Using this, the fluxes and gradients on the cell faces can
be expressed in terms of the neighboring nodal and boundary values. For instance, fo
lower portion of the west face of the trapezoidal boundary cell shown in Fig. 2b, the val
and gradient op at the face center can be expressed as

6 a¢ b 6
¢o=> aj¢; and <&> =Y Bi¢;. ©)
=1 v o1

where the coefficientg ands depend on the geometry of the cell and couple the value at tt
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face center to four nodal and two boundary values. Similar expressions can be constru
for the fluxes on the other faces of the trapezoidal boundary cells. These expression:
incorporated into the discrete representation of Egs. (3)—(5) and the final discrete equeé
for any given cellP is of the form as

> AL om =R, (10)
M

whereg is the variable under consideration (velocity or pressuray, the source term for
the corresponding equatioM, is the size of the stencil, and tie are the known coefficients
that depend on the geometry of the cell and other flow parameters. For a regular Carte
cell M = 5, whereas for a trapezoidal boundary ddll= 9. A typical 9-point stencil for

a boundary cell is shown in Fig. 2c. Furthermore, as the stencil in Fig. 2c indicates,
boundary conditions are directly incorporated into the flux calculation procedure. Cells t
lie inside the solid are treated within the framework of Eq. (10) simply by pufifig= 0
and zeroing out all the coefficients on the left-hand side of Eq. (10) that couple the valu
cell P with the neighboring values.

This interpolation scheme coupled with the finite-volume formulation guarantees that
accuracy and conservation property of the underlying algorithm are retained eveninther
ence of arbitrary-shaped immersed boundaries [58]. As pointed out earlier, in convect
dominated flows relatively thin boundary layers are expected to be generated in the vici
of the immersed boundary. These boundary layers not only are regions of high gradi
but often are the most important features of the flow field. Therefore, accurate represe
tion of the conservation laws is especially important in this region. The combination o
finite-volume approach and a locally second-order discretization that is employed her
therefore well suited to such flows. This method has now been extended to include moy
boundaries, and the modification and additions in the algorithm required to accomplish
are described in the following sections.

2.3. Flow Solver with Moving Immersed Boundaries

The objective in the following sections is to describe the Cartesian grid methodology in
presence of moving solid boundaries. The first element in such cases is the determinati
the boundary motion and the procedure for coupling the boundary motion with the fluid flc
As mentioned before, the immersed boundary is defined by “marker particles” distribu
on the boundary surface with a spacing which is of the same order of magnitude as the
spacing. Translating each marker particle with a prescribed velocity produces bounc
motion. Subsequently, at any time instant, for a given location of these marker partic
a smooth representation of the entire boundary can be constructed by fitting piece
guadratic polynomials through these particles.

As in the stationary immersed boundary case, a mixed-explicit scheme is used for t
advancement of the governing equations where the convection terms are treated expl
and the viscous terms implicitly. In cases where there is a two-way interaction between
flow and the moving boundary, a choice also needs to be made regarding the treatme
this coupling. One choice is explicit treatment where the boundary motion and the ti
advancement of the flow equations are carried out in a sequential manner. The altern
is implicit treatment where the boundary and flow are advanced in time simultaneousl
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a fully coupled manner. The primary advantage of the implicit approach is that it remo
any stability constraints associated with the boundary motion [18, 46]. This can be cru
in problems where the boundary motion is highly sensitive and closely coupled to f
flowfield such as in curvature-driven solidification and capillarity-driven flows. In fact, i
the previous work of Udaykumat al.[48], which focused on using a Cartesian grid methoc
for solving diffusion controlled dendritic growth, implicit coupling was employed and thi
resulted in a robust solution technique. Implicit coupling, however, provides no significe
advantage when the boundary motion is prescribed independent of the flowfield since in
case, the boundary motion is not subject to errors that can grow in time. In fluid—struct
interaction problems, where the boundary motion depends on the flow (for instance
flow-induced vibrations), explicit coupling results in a convective-type stability constrai
on the boundary motion, which can be relieved by employing an implicit treatment of t
boundary motion. However, since an explicit scheme is being used here for the convec
terms in the transport equations, there is no significant advantage to using implicit coupl
between the boundary motion and the fluid flow. In the current methodology an expli
boundary update is therefore employed. However, as shown in Udayletrabi48], if
needed, a predictor—corrector approach can be employed to implement an implicit coup
in a straightforward manner.

The first step in the time-advancement procedure is to update the location of the bounc
At any given timet, the immersed boundary is denoted by gﬁ(s, t), wheres is the
arc length along the boundary measured from a reference point. This is accomplishe
advecting each marker particle with the prescribed velocity as

Xi(t + At) = Xi (1) + Atdi (t + At), (11)

wherei corresponds to the index of the marker particle @nid the velocity of this marker
particle. The updated position of the marker particles is then used to reconstruct the boun
attime ¢ + At). Note that in advancing the boundary, the boundary velocity-atAt) is
used. As will be pointed out later, this allows consistency between the boundary veloc
and the velocity boundary condition for the fluid.

With the boundary location at - At) now known, the discretized advection—diffusion
equation, Eq. (3), can be rewritten as

.

g* — uH—At 1 - -
St(T) AVIFAL = =% TO[RE(UATAY — QAU A AT AT AS
f

1 _ _ A«
T g D L(VE 4 VA A d g, (12)
f

where the superscript+ At on the cell volumgAV), surface areagA'S), and normals
(A) indicates that the values corresponding to the boundary location at time levat,
e, X = @(s,t + At), are used in advancing the advection—diffusion equation frém
t + At. Equation (5) for the pressure is reformulated as

i} St . -
Z [V pH—At . nH—At] f Astf+At — E Z [U . n'[+At] § ASIf+At. (13)
f f
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As before, the summations in the above equations run over the sides of the given con
tational cell. Subsequently, the pressure correction is added to the intermediate veloci
shown in Egs. (6) and (7).

In keeping with the stationary boundary algorithm, the advection—diffusion equation (J
is solved with a boundary condition corresponding to the final velocity, gy (s, t +
At), t + At). This boundary condition is consistent with the boundary motion since tt
boundary is also moving at this same velocity as shown in Eq. (11). Therefore, the
slip, no-penetration condition is properly imposed at every time step even in the mov
boundary case.

The pressure boundary condition also needs to be reformulated for the moving boun
case. For stationary immersed boundaid@gpn = 0 is applied on the immersed boundary.
This boundary condition is consistent with the inviscid nature of the pressure correct
step and is found to work adequately in most cases. In the moving boundary case,
corresponding pressure boundary condition can be obtained from projecting the invi
momentum equation in a direction normal to the boundary. This gives

d au .o\ .
w_ St—+4u-Vi|-n
an ot

as the boundary condition for pressure. A convenient means of implementing this bounc

condition in the current solver comes from recognizing that the boundary condition can
recast as

p DU

— =-St— A
an Dt

The material derivative of the velocity (denotedyDt) can then be approximated directly

from the known boundary velocities and this obviates the approximation of the convect

term. For small boundary acceleration, which corresponds g 3t this term causes little

deviation from the homogeneous Neumann condition for pressure.

In the present framework, when stationary solid boundaries are embedded in the don
as with any pressure correction methodology, explicit mass conservation is enforced ove
domain boundaries. When deformable solid boundaries are presentinside the computat
domain, the mass conservation enforced at the domain boundaries should take accot
the net mass flux at the moving boundaries caused by the boundary deformation. The
mass flux arising at the moving interfaces is given by

nb
o= [ ol ds (14)

=14

wherenb is the number of immersed boundaries and the integral is performed over
surface of the immersed boundary. At each step, the mass deficit over the domain bound
is evaluated as follows:

ninlets noutlets

Maefict=»  Mj — > 1) — M. (15)
=1 =1

This mass deficit is distributed evenly at the designated outflow boundary through adj
ment of the intermediate velocity boundary condition. In the context of the current par
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this deficit correction is applied in the problems involving the moving indentation and tl
diaphragm-driven pump as presented under Results, Sections 3.2 and 3.4, respective
the case of the oscillating cylinder problem in Section 3.3, no net efflux of mass result:
the moving boundary and hence the moving boundary does not have any impact on gl
mass conservation.

It is worth pointing out that the form of Eqgs. (12) and (13) is virtually identical to (3
and (5). The primary difference is that for the trapezoidal boundary cells, the cell volun
surface area, and directions of the surface normals are now functions of time. Furtherm
the boundary conditions have to be reformulated in order to account for the time-depent
motion of the immersed boundary. However, unlike Lagrangian methods, time derivative:
the cell volume and surface area do not appear in the equation. In this respect, the simpl
of the Eulerian approach is retained. In the context of the current method, this impl
that the discretization of Egs. (12) and (13) at any given time step is virtually identic
to the stationary boundary case. Thus, the spatial discretization methodology describe
Section 2.2 can be used even with moving boundaries. The primary difficulty in the movi
boundary algorithm comes from the appearance of “freshly cleared” cells (this issue
discussed in the next section).

2.4. “Freshly Cleared” Cells

In sharp interface methods, such as the present one or those presented by ayydik
and Leveque and co-workers [5, 27], the issue of change of material needs to be addre
This arises when a computational point (as in Fig. 3), which was in the solid at one til
step, emerges into the fluid at the next time step. In Leveque and Li [27], the issue c
discontinuity in time at cross-over is dealt with by applying a jump condition in time t
the time-derivative term on the LHS of equations such as Eq. (12). For certain proble
this temporal jump condition is physically clear. For instance, in solidification problem
the temporal jump condition for the enthalpy in a given control volume is simply the late
heat released within that volume. In the present fluid-structure interaction problem, si
a physics-based jump condition is not available for the velocity field. Since thePcell
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FIG. 3. Change of material as the immersed boundary traverses the mesh. (a) Configuration in which
interface is nearly horizontal and (b) Configuration in which the interface is nearly vertical.
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was previously in the solid and it had no history in the fluid phase, there is no physice
realizable value oﬁ}‘j. Thus, Eq. (14) is not applicable for such cells.

In the current method, an approach similar to that used in the finite-difference mett
of Udaykumaret al. [48] is employed. This consists of temporarily merging the freshl
cleared cell with a neighboring cell and is analogous to the approach taken in moving ¢
formulations when a new cell is inserted following mesh refinement. In the current fini
volume-based methodology, this cell-merging is realized through a simple one-dimensic
interpolation operation and this can be explained here for the particular freshly cleared
shown in Fig. 3a. For this cell, the following interpolant is used,

u(y) = ap + a1y + any?, (16)

where, the coefficientsy, a;, anda, are coefficients that depend on the valugibvht P,

N, and the boundary locatidB, and the corresponding locations of these points. A simila
procedure can be followed for the situation illustrated in Fig. 3b. The above depende
can therefore be recast in the form

> Bfuy =0, 17)
M

and for this cell, Eq. (17) replaces the discretized advection—diffusion equation (12). N
that Eq. (17) is applied only at the instant when there is a crossover. Following that inst:
Eq. (12) is again used to time step fliefield. Note also that since pressure depends onl
on theu* field, Eq. (13) is still valid for these cells as longiscan be computed through
some appropriate means, such as Eq. (17).

2.5. Fast Solution of Discretized Equations

The general form of the discretized equations to be solved at each time stepis givenin (
The term on the left-hand side of this equation represents a discretized Helmholtz opel
in the case of the advection—diffusion equation and a Laplacian operator in the case o
pressure Poisson equation. The standard alternating-direction line successive—overrela:
(SOR) proves extremely effective for the solution of the discretized advection—diffusi
equation and the residual can be reduced to acceptable levels within a few iterations.
ever, the discretized pressure Poisson equation (PPE) exhibits significantly slower cor
gence. In fact, due to its slow convergence, the solution of the discretized pressure equi
is usually the most time-consuming part of a fractional-step algorithm. In the presence
immersed boundaries, this behavior of the pressure equation can be further exacert
since the discrete operator for the trapezoidal cells requires a stencil that has signifi
dependence on neighbors which are not included in the line-SOR sweeps. For exampl
Fig. 2c the coupling of the cell with its northeast and southwest neighbor is not incluc
directly in any of the line-sweeps. Furthermore, discretization in the irregularly shag
boundary cells results in weaker diagonal dominance than in the regular cells and this
a deleterious effect on the convergence of any iterative scheme.

In Ye et al.[58], a line-SOR preconditioned BiCGSTAB iterative method was employe
and was found to be significantly faster than a simple line-SOR algorithm. Furthermc
for the stationary boundary problems that were simulated there, it was found that this
erative method allowed us to obtain the solution of most problems in a reasonable am
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of time. However, BICGSTAB is inadequate when applied to moving boundary problen
As the boundaries move, the geometry of the domain changes and the elliptic nature o
PPE induces global readjustments of the pressure field. Thus, changes in the pressure
for moving boundary problems can be more significant than for the stationary bound
cases. Thus, the pressure from the previous time step is a much poorer guess for bour
cells in the moving boundary case than it is in the stationary boundary case. Conseque
the starting residual for the PPE in the boundary cells is generally higher in the movi
boundary case and considerable effort is therefore required to reduce these to accep
levels.

One of the most effective methods devised for these types of problems is the multic
method [52]. The key elements of a multigrid procedure are (i) an appropriate “smoothe
(ii) grid coarsening, (iii) restriction, (iv) prolongation, and (v) multigrid schedule. A numbe
of alternatives are available for each of these steps and the reader is referred to Wess
[52] and Briggs [7] for surveys. The implementation of a standard multigrid algorithm int
the current solver would at first glance also seem straightforward given the simple m
topology. However, the presence of a sharp immersed boundary presents a unique diffic
in this implementation. This issue is explained here with the help of the schematic shc
in Fig. 4.

An integral part of the multigrid procedure is grid coarsening. In structured grid methoc
the grid is typically coarsened by a factor of 2 or more at each multigrid level. Howev
representation of geometrical features such as that shown in Figs. 4a and 4b requires a|
priate resolution in the underlying Cartesian grid. Our experience with this method indica
that if the radius of curvature of a geometrical feature, ien acceptable representation
of the feature requires a grid spacing, which is smaller thy&1 This provides an upper
limit on the grid spacing in the vicinity of any geometrical feature, and the grid spacing
always chosen to ensure adequate representation of all geometrical features. In the cL
Cartesian grid method, there then arises the possibility that a given geometrical fea
of the immersed boundary will not be resolved on one or more of the coarse-grid leve
This will happen in the case where the grid spacing of a coarse grid is greater/tham
the vicinity of a geometrical feature with radius of curvaturdo some extent, a similar
problem would in principle also exist for a body-conformal, structured grid. However, or
simple remedy there would be to resort to semi-coarsening [52], where the coarsening is
done along the family of grid lines that is aligned with the boundary. This remedy, howev
is not available for the current solver since there is no unique family of grid lines that
aligned with the immersed boundary.

One alternative approach would be to develop a multiscale representation of the imme
boundary such that as the grid is coarsened, the geometrical features of the immersed b
ary are also appropriately coarsened. However, this approach has a number of undesi
features. First, developing a robust algorithm for multiscale representation of the bounc
is a nontrivial proposition because of the variety of situations that would have to be tackl
One simple case where difficulty may arise is when there are multiple distinct features
bodies) that are relatively close to each other. On a coarse grid, where the grid spacir
larger than the distance between these distinct boundaries, a coarse representation of
boundaries would necessarily lead to merging of these boundaries. Just how such a me|
would be implemented into the multigrid algorithm is unclear. Second, even if a multisc:
representation of the boundary could be constructed, the prolongation and restriction o
ations would be extremely complicated for the boundary cells. Furthermore, a wide vari
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FIG. 4. lllustration of the effect of coarsening of the mesh on the interface representation in the multig
solution of the Poisson equation. Arrows show information transfer. Filled circle is the coarse mesh point. O
circles are fine mesh points. (a) The fine mesh level with sharp interface embedded. (b) The coarse mest
embedded boundary. Four sample cells are shown shaded with different behavior of the sharp interface with re
to the coarse mesh. (cl) to (c4) lllustration of the interaction of the sharp interface with the fine mesh for c
marked 1 to 4 in (b). (d1) to (d4) Representation of the interface on the coarse mesh corresponding to the
(c1) to (c4). Shaded fine cells are taken to be solid cells.

of such cells will be encountered thereby eliminating the possibility of devising systeme
restriction and prolongation procedures for such cells.

It should be pointed out that there have been previous efforts at developing multic
methods in domains with internal structure, such as when the coefficients for the trans
are discontinuous [1]. However, the problems tackled in the present paper cannot n
use of these methods since, in the present case, the pressure field in not computed v
the solid regions. Therefore, the present method is not a one-domain solution of an elli
equation with discontinuous coefficients, but rather the solution of an elliptic equation i
domain with embedded “holes.” Webster [53, 54] has presented an algebraic multigrid
a Cartesian grid flow solver in which arbitrary internal geometries are introduced by c
blocking. However, in that method, the internal geometries are aligned with the Cartes
mesh and therefore that method is also not appropriate in the current case. Johanse
Colella[21] also have provided a brief account of a multigrid method for solving the Poiss
equation in the presence of immersed boundaries. In the following we describe in detail
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implementation of the multigrid in the presence of the embedded boundaries as adapte
the finite-volume approach. In the results section, we demonstrate the convergence beh
of the method described below.

The primary complexity in applying a multigrid technique in the current solver is ass
ciated with retaining the immersed boundary as a sharp interface at the coarse grid le
Motivated by this, a multigrid algorithm has been developed wherein the boundary is r
resented as a sharp interface only at the finest grid level. At the coarser levels, the pres
of the boundary is accounted for only in an approximate sense through the volume frac
of the coarse cells and no explicit reconstruction of the immersed boundary is done at tt
levels. Although conceptually this approach is relatively straightforward, the key is to ir
plement it in a systematic manner so that it is applicable for the wide variety of situatic
that could be encountered. Furthermore, it is also essential to ensure that this appr
does not significantly degrade the convergence properties of the multigrid algorithm. In
following, the implementation of this multigrid technique is described and in a later sectic
the convergence acceleration of this technique is demonstrated.

In order to simplify the following discussion, a uniform grid is assumed in both direction
However, the actual algorithm has been applied to the general nonuniform case. For
bulk of the flow domain, i.e., away from the immersed boundaries, a standard multig
with V- or W-cycle is used. Coarsening of the grid is performed as for simple Cartesi
meshes without regard to the immersed boundaries, so that the grid spacing &tigevel
given byh¥ = 2h*=1, For regular cells, away from the immersed boundary, the multigri
solve proceeds in a standard way that involves smoothing (¢vel

Vpk = <, (18)
residual computation at levk]
V2K — S = ¢, (19)
and restriction,
G s (20)
M

whereM goes over the four fine mesh cells surrounding the particular coarse mesh c
(Fig. 4c). This is followed by coarse mesh solve,

V2Kl = §F1 whereS+t = —gk+l, (21)
and finally, prolongation
¢ = ¢+, (22)
where

P = "am ol (23)
M
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In this summationM goes over the surrounding coarse nodes (see Fig. 4d1) dedotes
weights corresponding to distance-weighted interpolation as shown in Fig. 4d4.

The above procedure applies in the case where there are no immersed boundaries
cells that are distant from the immersed boundary. Now consider a boundary defining
immersed solid object on the finest level mesh (i.e., one where the solution is sought)
subsequent coarsening of the mesh with the boundary shape retained, as shown in Fi
and 4b. Some situations, which may arise upon coarsening the mesh in the presence
immersed boundary, are indicated in Figs. 4c1 to 4c4. As shown, the fine cells compris
the coarse cell may lie in solid or fluid phase depending on the manner in which 1
sharp interface passes through the fine mesh. In defining the Laplacian operator and al
affecting transfer between successive mesh levels, care has to be exercised in cells cut |
immersed boundary. Atthe finest level, the operators are assembled as detailed in Sectic
above. At this level, full information on the sharp immersed boundary is retained as
Figs. 4cl to 4c4. In the restriction step, residuals from the fine mesh are to be interpol:
to the coarse mesh. At the coarser levels, to avoid coarsening of the embedded geon
the geometry is represented using a volume fraction field. In the following discussion,
implementation procedure is described with primary focus on cells that are close to
immersed boundary.

Any given coarse mesh cell at levelsuch as the one shown in Fig. 4b, consists of fou
finer cells of levelk — 1. Assuming that, based on a set of rules [58], it has already be:
determined if a given cell at lev&l— 1 is in the fluid or in the solid, a procedure needs tc
be developed in order to make this determination for cells at the currentdelel each
cell at every grid level, a boolean varialgewhich has a value of one if the cell is a fluid
cell, and zero if the cell is a solid cell, is defined. Furthermore, a weighting fadalso
defined for each contributing fine-mesh cell, which corresponds to the fractional volu
contributed by that fine cell to the coarse cell. For a uniform mesh, 1/4 for any fine
mesh cell. Given these definitions, the volume fraction of fluid in a coarse cell aklével
estimated as (Figs. 4d1 to 4d4)

4

Q=D oyt (24)

M=1

where the summation runs over the four fine mesh points surrounding the coarse mesh
Therefore, for a coarse cell comprising of all four contributing finer level cells in the flui
phase, the volume fractiak = 1.0; otherwise O< QK < 1.0. The Boolean variablg can
now be defined at levdd based on the volume fraction of that cell as follows:

B =1 if05<Qf <10

(25)
g =0 if0.0<Qf <05.
The above definition holds for all levels> 1. For the finest level = 1) g and
are determined simply based on whether the cell center lies in the fluid or solid regior
follows:

:Bilj = Q,lj =0 if cell center lies in solid (26)
26
ﬁilj = Q,lj =1 if cell center lies in fluid.
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Thus, atthe finest level, the exact location of the sharp boundary is employed in construc
the cells, whereas at the coarser levels, the presence of the boundary is incorporatec
the discretization in an approximate manner by using the fluid volume fraction informatic
Equation (25) in effect implies that a coarse cell whose fluid fraction is less than 0.5 is
be considered a solid cell. This threshold volume fraction value of 0.5 used in determin
the phase of coarse cells is not chosen arbitrarily. In almost all cases it is found that
normalized volume of a trapezoidal boundary cell (of ldvel 1) is greater than 0.5. Thus,
the construction of the coarse cells near the boundary is consistent with that of the cel
the finest level.

The volume fractior©2 not only allows us to construct the stencils for all mesh levels
near the boundary but also facilitates the systematic development of the restriction
prolongation operations at all levels. This is accomplished by defining another variable
for each cell at every grid level, which derives its value frénn the following manner:

ne=1 if Q=1 ie, foracomplete fluid cell
)/IIF =2, if 0.5< QX <1.0,i.e., fora partially fluid cell (27)

ne=0, if 0 <QX<05,i.e.,forasolid cell

The restriction operation can now be accomplished at every grid level by modifying Eq. (.
using the variableg, 2, andw as

1 kel ke
gk = @Zsrj Bl (28)
1]

Thus, only the residuals from the finer-level cells that are in the fluid phase are usec
the restriction operation. Furthermore, the contribution of each finer cell is weighted by
fractional volume contributiom.

For the fine cells, the Laplace operator is assembled as explained in Section 2.3, by u
the compact linear—quadratic interpolant in the boundary cells. For coarse cells, the opel
is modified based on the value,ﬁﬁ to accommodate the volume fraction information. The
standard five-point central-difference discretization of the Laplacian is used on the coe
level k > 1),

O‘i,jd’ik,j +0‘i+1.,j¢ik+1,j +°‘i—1,i¢ik—1,j +0‘i,j+1¢’ik,j+1+0‘i,i—1¢ik,j_1 =&, (29)

wheres¥ is computed from Eq. (21). The nominal values of the coefficierits Eq. (29)
correspond to those arising from central-difference discretization of the Laplace operato
a regular Cartesian mesh. For cells that do not adjoin the immersed boundary, these re
unchanged. In coarse cells that are partially solid or have neighbors that are partially sc
these have to be modified to account for the presence of the (coarsened) immersed bour
The volume-fraction information is used in the coarse cell discretization to construct
coefficientsy in Eq. (29) in the manner described below. The volume-fraction-based coal
cell representation of the four cells shown in Figs. 4cl to 4c4 is illustrated in Figs. 4d1
4d4. The corresponding values,ﬁif, computed from Eg. (25), are also illustrated in the
figure. For a coarse cdll,

if ,35 = 0, thenoq,j = 1, Oitlj =0i—1j = 0 j—1 = Oj j+1 = 0 and 8-k= 0. (30)
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Thus, the correctioncpi'fj are set to zero in the coarse cells with fluid fracti«ﬂ}‘p < 0.5.
These cells are treated as solid cells at the coarse grid level and therefore the correction
on the coarse mesh is not computed in such coarse cells. On the coarse mesh, the corre
are computed only in those computational cells whose fluid fra@ﬁ)m 0.5. Whether or
not the corrections are computed in a given cell is determined by the computational fl
yl']‘ setin Eg. (27). Now, some of the coarse fluid cells have neighboring cells in the sc
phase, i.e., withf2 < 0.5. For such coarse cells, the standard 5-point stencil in Eq. (30)
modified to impose a Neumann boundary condition on the adjoining face. This is achie
through the following condition:

If g =1,

am=orm if y<#£2 forall(,m), | £i,m=# j, (31a)
am=0, if yt=2 forall (,m),| #i, m#j. (31b)

The first condition implies that if the neighbor to a side of the cell is a fluid cell, as give
by the condition in Eq. (25), then the usual central-difference coefficient is retained for tl
side. If the neighbor is in the solid phase, then the coefficient for the neighbor on that <
is set to zero. This applies a Neumann condition for the correction field on that cell fa
Note that in the coarse mesh, by this procedure, the volume-fraction representation re
in a stair-stepped treatment of the embedded solid boundary. This rough representatic
the immersed boundary on the coarser meshes is an implicit coarsening of the embe
geometry accomplished through the volume fraction variable at all mesh levels except a
finest level, where the shape of the interface is accounted for exactly. Once the coeffici
of the neighboring cells have been computed, the coefficient of thiedell is assembled as

o =— Zoq,m, with summation ovet # i, m#j. (31c)

I,m

Once the correction field at leviels obtained, the prolongation of these corrections to thi
next fine levek — 1 is performed as follows. For afine cell at leite} 1 in the fluid phase,
i.e.,acellforwhichg # 0, the prolonged correctio}ﬁ- is obtained using distance-weighted
interpolation from the surrounding coarse mesh cells as

~ 1
¢ikj = A ZKlmfﬁhn, (32)
I,m

where the summation goes over all neighboring coarse cells,

kim = 0, if <=0 (33a)
_1\2 _1\2 .
am = (=X (v — V) oy #0 (330)
and A = qum. (33c)
I,m

If ﬁi'fl = 0, no correction is performed since that fine-level cell lies in the solid phas
The procedure described above leads to a multigrid algorithm that successfully ave
coarsening of solid immersed boundaries, while executing information transfer from f
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to coarse meshes and vice-versa. The coarse grid calculations account for the bour
only in an approximate manner and the effect of this on the overall convergence beha
is examined in Section 3.1.

2.6. Overall Solution Procedure

Given the velocity and pressure field and interface position atttjittee overall solution
procedure to advance the solutiort t¢ At is as follows:

1. Advance the immersed boundary to its positioh-atAtas described in Section 2.3.

2. Determine the intersection of the updated immersed boundary with the Cartesian n
and using this information, reshape the trapezoidal boundary cells.

3. Update the discrete expressions corresponding to (10) for the boundary cells incluc
freshly cleared cells.

4. Advance the discretized equations in time:

a. Solve for intermediate velocity fieldf.
b. Solve for pressure from Eq. (13) using the multigrid technique.
c. Correct the velocity field as in Eq. (6)—(7) to obtain velocity field &t At.

This completes the description of the current simulation methodology. It should be poin
out that although the methodology has been described only in the context of 2-D geomet
the approach developed here can be extended to three dimensions. The key aspects
addressed in extending this methodology to 3-D are efficient methods for represen
curved 3-D interfaces and reconstructing boundary cells [20, 25]. Apart from these aspe
the discretization procedure described here carries over into 3-D in a straightforward way
the following sections the focus is on examining the performance of the multigrid algorith
validating the solution methodology by comparing computed results with experiments, ¢
demonstrating the capabilities of the method for simulating flows with complex immers
moving solid boundaries.

3. RESULTS

3.1. Multigrid Performance with Immersed Boundaries

The performance of the multigrid algorithm outlined above is first examined in tf
presence ofimmersed boundaries by comparing it to a case which does notinclude imme
boundaries. This is accomplished by computing flow through a channel with increas
geometric complexity introduced by inserting immersed boundaries into the domain (;
Fig. 5). The first case (Fig. 5a) is that of a simple channel flow with no internal immers
boundaries. The complexity of the domain is increased by introducing cylinders into t
channel and the second, third, and fourth cases include 1, 5, and 11 cylinders (each of r
0.05) in the channel, respectively. A staggered-array type configuration is chosen and
geometry of this array is shown in Fig. 5b. Note that in the present Cartesian grid meth
the mesh remains unchanged as immersed boundaries are successively embedded
domain. The inlet flow for all cases corresponds to a Reynolds number of 100 defined
the channel heightH{) and inlet velocity. The streamwise length of the channel is equ:
to 5H and in all cases a uniform 40080 grid is used. The convergence acceleration o
the multigrid scheme is compared for these various cases for the first time step, givel
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FIG.5. lllustration of the setup for channel flow computation as a test of the multigrid algorithm. (a) A chanr
without immersed boundaries. (b) A channel with immersed boundaries. First, the channel walls are immers:
the computational domain. Thereafter, cylindrical obstructions are successively added in the domain.

initial condition of i = (1, 0) and p = 0. In each case, we report on the behavior of ¢
multigrid run with a V-cycle consisting of one LSOR iteration at the finest level and thre
iterations at each coarse level. Through numerical experimentation, this schedule was ft
to yield the optimal convergence behavior for a number of different flow configuratior
The convergence history for cases 1 (no cylinders) and 4 (11 cylinders) is shown in Fi
and results for all cases are presented in Tables | and Il. Table | contains information al
the actual speedup (CPU time) produced by the multigrid technique whereas in Tabl
the numbers of iterations at the finest level are presented. In both tables, all values
normalized by the corresponding value observed for the convergence without multigrid
the particular case.

Figure 6a shows the convergence history for the first case, where the only immer
boundaries are the channel walls. This is the baseline case, which should exhibit
performance of a standard multigrid algorithm. The pressure Poisson equation has |
solved with one-, two-, and three-level multigrid schedules and Fig. 6a clearly shows
convergence acceleration achieved by the multigrid algorithm. The corresponding ni
bers in Tables | and Il show that the CPU time required for two- and three-level mul
grid schedules is only 21 and 7.8%, respectively, of the CPU time required by the
sic LSOR scheme. In terms of iterations, the two- and three-level multigrid schedu
require only 17 and 5.6% of the number of iterations required by the baseline LS(
scheme. The slight mismatch between the iteration reduction and the CPU reductio
due to the CPU time associated with the computation at the coarse grid levels. Figure
shows the corresponding convergence behavior for the most complex case, where
are 11 cylinders, and a number of observations can be made regarding this figure. F
the convergence acceleration with increasing grid level for this case is comparable to

TABLE |
CPU Times for the Multigrid Solver for the Pressure Poission Equation

Channel Channel with Channel with Channel with

Levels (no cylinders) 1 cylinder 5 cylinders 11 cylinders
1 1.000 1.000 1.000 1.000
2 0.210 0.163 0.136 0.158
3 0.078 0.045 0.034 0.035

Note.The CPU times in each case have been normalized by the single-grid LSOR time.
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TABLE Il

for the Pressure Poisson Equation

Channel Channel with Channel with Channel with

Levels (no cylinders) 1 cylinder 5 cylinders 11 cylinders
1 1.000 1.000 1.000 1.000
2 0.170 0.137 0.118 0.153
3 0.056 0.035 0.028 0.030

Note.The iterations in each case have been normalized by the single-grid LSOR iterations.

observed for the simple channel case. This is indeed confirmed in Tables | and I, wh
it is shown that the CPU times required by the two- and three-level multigrid sche
ules for this case are about 16 and 3.5%, respectively, of the baseline LSOR sche
A similar convergence acceleration behavior is also observed for the cases where t
are one and five cylinders. This numerical experiment therefore indicates that increas
geometrical complexity and the associated approximate correction procedure, adopte
the coarse levels, do not degrade the convergence behavior of the underlying multi
method.

It is also observed in Fig. 6b that, overall, the number of iterations required for tl
case with no cylinders is much lower than that required in the case where there are
cylinders. This is because increasing complexity in the domain can be expected to alw
increase the effort required to converge the pressure Poisson equations since the pre
field has to satisfy the Neumann boundary condition at multiple boundaries in the dom:
Note that comparison of convergence rates for a given case with increasing grid leve
straightforward. On the other hand, comparigetweerthe various cases has to be done
with the realization that the distribution of the starting residual, even with the same init
guess, might be quite different. However, the objective of the current set of calculation:
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FIG.6. Covergence path for the PPE using LSOR preconditioned multigrid. The number of levels is indicat
The convergence residual was specified taebe 1075, (a) The case of channel flow with channel walls as
immersed boundaries. (b) The case of channel walls as immersed boundaries and with 11 immersed cylinc
obstructions.
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to compare theelative convergence behavior of the multigrid with increasing complexity
and this comparison can be made clearly despite the difference in the starting residual

In addition to the cases presented in this section, several cases with complex dom
and moving boundaries, including those presented in the following sections, have b
computed using the present multigrid technique. In each case the multigrid has vyiel
substantial acceleration of the solution to the Poisson equation.

3.2. Convergence with Mesh Refinement for a Moving Boundary Calculation

We now present an analysis of the variation of solution error with grid refinement in orc
to establish the overall order of accuracy of the numerical method. This study is perforr
for the case where a solid moving boundary is immersed in a fluid enclosed within a don
with solid no-slip walls. The flow situation can be visualized from Fig. 7a. The cylinde
of diameterD = 1.37 units was placed initially at the center of the box of dimensiol
2.7 x 2.7 units and oscillated horizontally with a nondimensional time period of 1 and
amplitude of 0.2®. The oscillation was effected by moving the cylinder as a rigid bod
with velocity given by

vy = 0.257 sin2zt); vy = 0.

The flow for this moving boundary problem is simulated using the current solver for
Reynolds number (with respect to the cylinder diameter) of 100. The following sequence
grid sizes was employed in performing the error analysist 20, 60x 60, 100x 100, and
270 x 270 grid points. In the absence of an exact analytical solution to this flow proble
the results on the 27Q 270 mesh was taken to be the “exact” solution in order to obtai
the error distribution for each of the coarser meshes.

The cylinder motion was impulsively started with the above velocity function. A sma
time step ofAt = 10~* was chosen for all these simulations in order to minimize the effe
of temporal errors on the solution. The simulations were carried out for one oscillati
period and the velocity components at each grid point were recorded for all the mes
under consideration at the end of this period. For a gNer N mesh, the nth norm of the
error was computed as

1 & N 27 o
n
SES
j=1

whereg

i~ denotes a generic computed variablevglocity component in this case) on the
N x N mesh, and is the index of the grid cell on this mesh.

The results of the analysis are presented in Fig. 7. Figure 7a shows the flowfield develc
due to the moving cylinder in the box, at a time corresponding/tof the period of
oscillation, at which time the cylinder is moving to the right. This flow calculation wa
performed on the 27& 270 mesh. The streamlines of the flow induced by the movin
cylinder and thex-velocity contours are shown in Fig. 7a. The presence of significal
velocity gradients in the boundary layers adjoining the moving cylinder can be seen in
contour plot. Furthermore, due to the closed domain in which the cylinder moves anc
the incompressibility constraint, a recirculating flow is created with streamlines emergi
from the leading side of the cylinder and attaching at the trailing side. In Fig. 7b v
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FIG. 7. (a) Computational domain, streamlines, aauelocity contours for a cylinder oscillating in a box
computed on the 27Q0 270 mesh. (b) The error distribution irvelocity for a 20x 20 mesh. (c) The error
distribution for the 60< 60 mesh. (d) The convergence behavior of the error normsLThandL; norms are
shown along with the reference (dashed) line corresponding to second-order convergence.

show the distribution of the local errgp{™’ — ¢{*%| for the coarsest 26 20 mesh. The
magnitudes of errors are labeled on a few contours and it can be observed that the e
are clearly concentrated in the region surrounding the cylinder where significant gradie
exist. Figure 7c¢ shows the error distribution for thex680 mesh. Again, the errors appear
to be concentrated in the boundary layer region; however, as expected, the magnituc
the error is lower than that in Fig. 7b. Figure 7d shows the convergence behavior of
error norms for the three meshes (220, 60x 60, 100x 100) with respect to the finest
reference mesh solution. Logs of betfande,, are plotted against log{, whereh is the
grid spacing. Also plotted is a reference line with a slope of 2 corresponding to seco
order convergence. As can be noted, the convergence rate of error in the simulatior
close to the reference line, indicating nearly second-order-accuracy. It should be poir
out that similar behavior in the error was observed when error was analyzed at intermec
times during the oscillation cycle. It should be noted that exact second-order-accurac
not expected in this test primarily because the errors are not computed based on an ¢
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FIG. 8. Configuration used to validate the current method. Flow in a channel with a moving indentation. T
inflow condition is a Poiseuslle flow, Re507.

solution. In conclusion, even in the case of a moving boundary, the second-order sp
accuracy inherent in the spatial discretization is maintained.

3.3. Flow in a Channel with a Moving Indentation

There are a few problems with moving solid boundaries interacting with flowfields whe
detailed experimental and numerical results have been documented for use as benchn
One such problem is that involving the flow in a channel with a moving indentation pe
formed by Pedley and co-workers [34, 38]. This is a model for the collapse of a blood ves
and has relevance in cardiovascular flows. The arrangement is as shown in Fig. 8. Pois
inflow condition and channel dimensions are specified in line with the experiment. T
Reynolds number is

Uod
v

Re= = 507.

(Ug = % is the velocity scale, wher@g is the volumetric flow rate per unit channel depth
andd is the channel height.) The motion of the indentation is imposed in experiments
means of a piston pushing against a rubber diaphragm. The velocity of the interface is g
by [38]:

vy(X, 1) = g(x)h(t),
where
1
h) = 5(1 — cos(2rt)). (34)

The spatial variation is given by

=0 X1 < X < X2
=%s(1+tan hB(X — Xo) X2 < X < X3

gx) =¢ X3 <X <X (35)
:%g(l —tanhgx) X4 < X < X5

=0 X5 < X < Xe,
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where locations(; to xg are as shown in Fig. 8. In Ralph and Pedley [38], the strearr
function vorticity method has been used along with a body-fitted moving mesh to solve
problem. In the present method, primitive variables are used and the mesh remains fi
We will compare our results for this case with experiments [34] and numerical results [3
For low Strouhal numbers, the flow behaves in a quasi-steady fashion and the sequen
events in time as the indentation grows, corresponds to those encountered when ste
state solutions are obtained at the different geometries and juxtaposed. The physics ©
problem is interesting for high enough Strouhal numbers, when the quasi-steady assum;
no longer holds and the full unsteady, viscous dynamics needs to be captured to reproi
the experimental results.

For the Strouhal number chosen here, i.e., for the frequency of oscillation of the ind
tation, the flow in the channel downstream of the indentation falls in the unsteady regir
The squeezing of the flow in the channel propagates waves downstream of the constric
leading to the formation and advection of vortices on both the top and the bottom surfa
of the channel. The streamlines are shown in Fig. 9 at various instants in one cycle of |
tion of the indentation, for the case where=82.037,c = 0.38, and8 = 4.14. Our results
reproduce almost exactly the sequence of events occurring in the experiments and &
with the numerical results of Ralph and Pedley [38]. In Fig. 9 we show the developme
of a series of eddies downstream of the moving indentation. These eddies are formed
cessively in time as the disturbance propagates through the channel. In agreement witl
numerical [38] and experimental [34] results, we find that the eddy B at the top wall spl
at a nondimensional time betwees: 0.6 andt = 0.65 into three eddies. This behavior of
eddy B is shown in detail in Fig. 10. In Fig. 11, we compare the wave propagation char
teristics quantitatively with numerical and experimental results of Pedley and coworke
We show in that figure the location of the crests and troughs associated with each of ed
B, C, and D with time. The slope of this curve gives the phase velocity of the disturban
downstream of the indentation. Note that for eddies B and D, we measure trough posit

(a) t=0.2 (h) t=0.65

=

(b) t=0.30

(c) t=0.40

Eddy A Eddy C

FIG. 9. Wave formation and propagation downstream of a moving indentation computed with the pres
numerical method. The formation of the various eddies downstream of the indentation is indicated. The no
mensional time instants at which the streamlines are shown are also indicated.
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(a)t=0.55 (b)t=0.60

(d)t=0.70

. Cc7
”w

04 B
16 1’

FIG. 10. Splitting of eddy B downstream of the indentation. The eddy splits between nondimensional tir
t=0.6 andt = 0.65, in agreement with the experiments [34] and numerics of Ralph and Pedley [38].

i.e., x-location of the lowest point of the eddy, for C the crest, ielocation of highest
point of the eddy. As seen from the figure, the phase speed of the disturbances, as give
the slope of the-t curves, is captured accurately by the present method. The position &
phase velocity of the waves computed by the present method appear to match with ex
mental results better than the numerical results of Ralph and Pedley [38]. The trifurcat
of the curves in Fig. 11 corresponds to the occurrence of multiple crests and troughs
to the splitting of eddies B and C. The numerical results for the time and location of t
splitting of the eddies agree with the experimental results. Thus, the numerical metho
successful in capturing the full unsteady, viscous effects in the flow caused by the mo\
indentation.

0.8
0.8
Non-dimensior
time 07

0.6

0.5

0.4

16 17 18 19 20 21 22 23 24

0.3 1 1 ) '

X-location of eddy crest/trough

FIG. 11. x-t curves for the eddies labeled B, C, and D in Fig. 9g. Solid lines—present calculation; dast
lines—numerics of Ralph and Pedley [38]; symbols—experiments of Pedley and Stephanoff [34]othtons
correspond to the respective crests and troughs of the eddies downstream of the moving indentation. The trifur
of eddy B is also tracked and the locations of the three eddies formed after splitting are also plotted.
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3.4. Vortex Shedding from an Oscillating Cylinder in Uniform Free Stream

The second flow configuration that has been chosen to validate the current comp
tional technique is flow past a transversely oscillating circular cylinder and the associa
phenomenon of vortex shedding “lock-on.” Vortex shedding “lock-on” is a classical ph
nomenon that is observed in the wake of bluff bodies and refers to the situation where
frequency of vortex shedding in the wake synchronizes with or locks on to the frequer
of an imposed perturbation. The perturbation could be imposed through pulsation of
incoming flow [16] or by free [30] or forced vibration [26] of the bluff body immersed
in a steady oncoming flow. In particular, vortex-shedding lock-on past a transversely
cillating cylinder has been studied extensively and is a good benchmark case to valic
the current methodology. Here we have simulated flow past a cylinder-at2Ré under-
going sinusoidal transverse oscillation over a range of amplitudes and frequencies, a
direct comparison of the computed results with the experiments of Koopmann [26] &
simulations of Meneghini and Bearman [29] is made.

The computational domain and grid used for the current simulations are shown in Fig.
Alllengths here have been normalized by the cylinder diani@téys can be seenin Fig. 12,
a relatively large (3 30) computational domain size is used for the current simulatio
and the mean location of the cylinder centey, /o) is (10, 15) relative to the left bottom
corner of the domain. A uniform free stream velocitl,, is prescribed on the inflow
(left) and top and bottom boundaries and a convective boundary condition employec
the exit (right) boundary. The cylinder is oscillated sinusoidally such that the locati
of its center K¢, Yc) is given by x.(t) = Xo; Yc(t) = Yo + Asin(2r f;t), wheret is the
time nondimensionalized b /U, and A and f; are the nondimensional amplitude and
frequency of the oscillation, respectively. As shown in Fig. 12, a nonuniform mesh is us
in the simulation wherein enhanced resolution is provided in the cylinder vicinity and
the wake. In the vertical direction, enhanced resolution is provided up to three diameter:
either side of the nominal cylinder location, which is adequate to cover the near wake
all the oscillation amplitudes studied here. The cylinder is immersed and oscillates thro
the fixed, nonuniform, Cartesian mesh.

30

25}

20k

>15

10F

20 30

FIG. 12. Nonuniform mesh used in the simulations. Only every other grid line is shown in both directions.
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As afirst step, flow past a stationary circular cylinder atHR00 has been simulated. The
flow at this Reynolds number exhibits classical Karman vortex shedding and the curr
simulation has been continued for about 40 shedding cycles beyond the point whel
reaches a stationary state. The vortex-shedding frequency was computed from the vari
of the velocity components in the near wake and based on this, a hondimensional vc
shedding frequency of (or Strouhal numbigry= 0.198 was obtained. This value matches
well with the experiments of Williamson [57], who obtained a Strouhal number of 0.19
Furthermore, the average value of the computed drag coefficient was 1.38 and this mat
well with the numerically calculated value in Braea al. [8]. The flowfield from this
stationary cylinder simulation was used as the initial condition for all oscillating cylind
simulations.

In the current study, two sequences of simulations have been carried out at fixed
plitudes &) of 0.1 and 0.2 and the frequency has been varied systematically over a ra
around the natural vortex shedding frequerfgy Each of these simulations is integrated
in time for about 200 nondimensional time units, which is sufficient to reach a station:
state. Subsequently, the equations are integrated further for abdby PQOand the vortex
shedding frequency is determined by computing the frequency spectra of the velocity f
tuation in the near wake over this period of time. The solid line in Fig. 13a shows the vor
shedding lock-on region in the space defined by the oscillation frequeraig) and am-
plitude (y-axis), as determined experimentally by Koopmann [26] foeR$0. According
to this figure, lock-on is observed for amplitudes higher than 0.05 and the frequency ra
over which lock-on occurs increases with oscillation amplitude.

Figure 13b shows the variation of the vortex shedding frequency in the wake of the cy
der for A = 0.1 for a range of cylinder oscillation frequencies. The horizontal line in th
plot corresponds to the natural shedding frequency and the dashed inclined line repre:
the situation of lock-on where the shedding frequency matches the oscillation frequel
Our simulations indicate that vortex shedding lock-on occurs for oscillation frequenc

E 022}

S
|
f

> 0.2

10; Y\ B =m F
C \ 0.18

Fovaabanaa b ! Lo 5 I S Y R N S
§30 20 -10 0 10 20 30 005 01 015 02 025 03

100 x ( f,- f, )/, f;

FIG. 13. (a) Plot of the lock-in range determined by Koopman [26] shown by the solid lines. Results fro
current simulations are also plotted. Filled squares indicate lock-on, while open squares indicate that lock-ot
not result. (b) Variation of vortex shedding frequency with forcing frequencyAfer0.10. Dashed line indicates
lock-on and the horizontal line indicates the natural vortex shedding frequency of 0.198. The filled squares ar
results from the calculations.
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FIG. 14. Contour plot of spanwise vorticity showing the shedding of three vortices per shedding cycle f
A=0.33 and a forcing frequency of 0.15872.

of 0.95f; and 1.05,. As the oscillation frequency is decreased below ,9%he vortex
shedding decreases monotonically and approaches the natural shedding frequency. A <
what different behavior is observed as the frequency is increased beyorfg. \M@observe
that as the frequency is increased, the vortex shedding frequency rapidly drops to a v
below the natural shedding frequency and then approaches this value as the oscille
frequency is increased further. A similar behavior in the frequency has been observec
Stansby [40]. The results of our simulations are superposed on the plot in Fig. 13a anc
find that the lock-on behavior predicted in our simulations is in line with the experimer
of Koopmann [26]. Four simulations have also been carried out &vith 0.2. The results
of these simulations have also been plotted in Fig. 13a and are also found to be in line \
the experiments.

Finally, one simulation has been carried out wihk=0.33 and a forcing frequency of
0.15872. Meneghini and Bearman [29] have simulated this flow using a vortex method :
have found that for these parameters, three vortices are shed in the wake for each she«
cycle. Figure 14 shows a contour plot of the spanwise vorticity obtained from our simulati
at one time instant and we also observe two clockwise and one anti-clockwise vorti
being shed per cycle of the cylinder oscillation. Thus, the current simulations confirm t
experimental observations of Koopmann [26] and also match the computational result
Meneghini and Bearman [29], thereby providing further validation of the current simulatic
methodology.

3.5. Diaphragm-Driven Micropump

To demonstrate the ability of the method to handle flows with multiple moving boun
aries, the final configuration that we have chosen is that of a diaphragm-driven micropul
Figure 15 shows the geometry of the micropump. The pump is driven by the diaphrag
which oscillates sinusoidally in the vertical direction. The directionality of the flow throug
the pump is controlled by the two valves, which open and close in concert with the «
cillating diaphragm. In real applications [60], the diaphragm is usually activated throu
electrostatic forcing and the valves are driven by the hydrodynamic force produced in
pump chamber due to the diaphragm oscillation. However, in the current computatio
model, since the objective is to demonstrate the capabilities of the method for comg
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FIG. 15. Schematic of the micropump configuration simulated in the current study.

moving boundary cases, the valves are made to move with a prescribed motion. The
guence of valve motion is chosen so that fluid primarily enters the pump chamber fr
the left orifice and exits from the right. The inflow and outflow chamber are separated b
wall and a soft boundary condition is applied at the lower computational boundary, whi
allows inflow or outflow. This flow contains complex stationary as well as multiple movin
boundaries. Such a configuration would pose a challenge to any structured or unstructt
body-conformal Lagrangian method and serves to demonstrate the capabilities of the
rent method. The current simulation of the micropump has been carried out on a unift
200 x 224 (x x y) Cartesian mesh. The length, velocity, and time scale of the flow a
chosen to be the diaphragm length, maximum diaphragm velocity, and time period of
diaphragm oscillation, respectively. Based on these, the Strouhal and Reynolds num
chosen for the current simulation are 1.0 and 100, respectively. The time step size is
that it requires 2000 time steps to complete one cycle. The simulation is carried out u
a stationary state is obtained and the results presented here correspond to this stati
state.

Figure 16 shows a sequence of four plots over one pumping cycle. Figure 16a co
sponds to the maximum expulsion phase in the cycle. At this phase, the diaphragm |
a neutral position but moving down with its maximum velocity. The valve timing is chc
sen so that the left valve is closed and the right valve is fully open. This allows mc
of the flow to exit the pump chamber from the right exit and this is clearly shown &
the velocity vectors. The pressure contours also show that a high pressure is create
side the pump chamber due to the motion of the diaphragm. Figure 16b shows the |
phase in the pumping cycle where the diaphragm has reached its lowest position ar
about to initiate its upward motion. Both the valves are open halfway and this allo
flow through both of the orifices. The spanwise vorticity contours are plotted, showi
the complex structure of the flow both inside the pump chamber and at the inlet and «
chambers. Figure 16¢ shows the flow at the maximum ingestion phase of the cycle wi
the left valve is fully open and right is closed. Finally, Figure 16d corresponds to the ph:
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FIG. 16. Flow in a diaphragm-driven micropump. The plots show pressure contours, vorticity contours, a
velocity vectors at four phases in the pumping cycle. Dark shades correspond to high pressure and clockwise
ticity, whereas lighter shades correspond to low pressure and counterclockwise vorticity. (a) Maximum expul:
phase. Velocity vectors and pressure contours are shown. (b) Minimum chamber volume phase. Velocity ve
and vorticity contours are shown. (c) Maximum ingestion phase. Velocity vectors and pressure contours are sh
(d) Maximum chamber volume phase. Velocity vectors and vorticity contours are shown.

where the diaphragm is fully deformed upward and the both valves are halfway op
Large-scale vortical structures are formed at this phase due to flow separation on the
valve.

It is worth pointing out that this simulation has been carried out on a desktop DE
Alpha workstation equipped with a 533-MHz, 21164 processor. On average, the simulat
requires 8.5 CPU seconds per time step, which translates to 4.7 CPU hours per pum
cycle. Thus, an entire simulation covering about 10 pumping cycles can be complete
about 2 days.
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4. SUMMARY

A method for simulating flow around complex moving boundaries on Cartesian grids
been presented. The advantage of the method is that since the body motion is independ
the mesh, problems associated with mesh reconfiguration and motion are circumvented.
key aspect of the current method is that the moving immersed boundary is representec
sharp interface and this makes the method well suited to convection-dominated proble
The fractional-step method has been reformulated in the context of the current Euleri
Lagrangian approach; details of this have also been discussed. A unique problem that a
in these fixed grid, sharp interface methods is the temporal discretization of the goverr
equations in the so-called freshly cleared cells. These are cells which were in the soli
one time step but emerge into the fluid at the next. A consistent and systematic remed
such cells has been presented.

The convergence of a conventional line-SOR iterative solver has been accelerate
using a modified multigrid algorithm that appropriately accounts for the presence of
sharp, immersed boundary. In this method, a volume-fraction-type approach is appliec
restriction, prolongation, and smoothing at the coarser levels and this removes any nee
explicit reconstruction of the immersed boundary on the coarse grids levels. The per
mance of the multigrid vig-Vis a single grid-level LSOR has been shown in the immerse
boundary cases to be comparable to that for the method without immersed boundaries.
thermore, the multigrid method has been shown to perform well for increasing comple»
of the geometry caused by multiple boundaries embedded in the domain. A consequen
this is that the boundary motion does not lead to a significant increase in the required (
time.

The solver is used to simulate two problems that have reliable experimental data
comparison. The first problem, namely the flow in a channel with a moving indentati
in one wall, serves as a benchmark for techniques that simulate the interaction of mo
solid boundaries with viscous, incompressible fluids. It is found that our computed resi
match very well the experimental and numerical data of Pedley and co-workers [34, 38]
particular, the propagation speed of the eddies and the time and location of their brez
into smaller eddies are predicted correctly. The second case used for validation is flow
a cylinder oscillating transversely in a freestream. Simulations have been carried out «
a range of oscillation frequencies and amplitudes and the frequency—amplitude enve
where vortex-shedding lock-on is observed matches well with the experiments of Koopr
[26]. As a demonstration of the flexibility and efficiency of the method, flow has also be
simulated in a model of a diaphragm-driven micropump containing complex stationary
well as moving immersed boundaries.
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