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A Cartesian grid method for computing flows with complex immersed, moving
boundaries is presented. The flow is computed on a fixed Cartesian mesh and the
solid boundaries are allowed to move freely through the mesh. A mixed Eulerian–
Lagrangian framework is employed, which allows us to treat the immersed moving
boundary as a sharp interface. The incompressible Navier–Stokes equations are dis-
cretized using a second-order-accurate finite-volume technique, and a second-order-
accurate fractional-step scheme is employed for time advancement. The fractional-
step method and associated boundary conditions are formulated in a manner that
properly accounts for the boundary motion. A unique problem with sharp interface
methods is the temporal discretization of what are termed “freshly cleared” cells, i.e.,
cells that are inside the solid at one time step and emerge into the fluid at the next time
step. A simple and consistent remedy for this problem is also presented. The solution
of the pressure Poisson equation is usually the most time-consuming step in a frac-
tional step scheme and this is even more so for moving boundary problems where the
flow domain changes constantly. A multigrid method is presented and is shown to
accelerate the convergence significantly even in the presence of complex immersed
boundaries. The methodology is validated by comparing it with experimental data
on two cases: (1) the flow in a channel with a moving indentation on one wall and
(2) vortex shedding from a cylinder oscillating in a uniform free-stream. Finally, the
application of the current method to a more complicated moving boundary situation
is also demonstrated by computing the flow inside a diaphragm-driven micropump
with moving valves. c© 2001 Elsevier Science
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1. INTRODUCTION

In recent years there has been a renewal of interest in numerical methods that compute
flowfields with complex stationary and/or moving immersed boundaries on fixed Cartesian
grids. The obvious advantage of these methods over the conventional body-conformal ap-
proach is that irrespective of the geometric complexity of the immersed boundaries, the
computational mesh remains unchanged. Cartesian grid methods free the underlying struc-
tured computational mesh from the task of adapting to the moving boundary, thus allowing
large changes in the geometry due to boundary evolution.

Methods that simulate flows with complex immersed boundaries on Cartesian grids can
be broadly classified into two categories:

1. In representing the effect of the immersed boundary on the surrounding fluid phase, the
immersed boundary is represented as a “diffuse” interface of finite thickness. The thickness
of the boundary is usually on the order of the local grid spacing. This category of methods
includes most methods that employ body and/or surface forces and/or mass sources in order
to represent the effect of the immersed boundary [3, 14, 15, 36, 49, 50] as well as methods
which use the volume-of-fluid [6] and phase-field [9, 51, 55] approaches.

2. The boundary is tracked as a sharp interface, either explicitly as curves or as level sets
on fixed meshes. The communication between the moving boundary and the flow solver is
usually accomplished directly by modifying the computational stencil near the immersed
boundary [2, 4, 11, 18, 27, 35, 37, 47, 58].

The methods in the second category share an important property with conventional body-
conformal methods in that the boundary is represented as a sharp interface irrespective of
the grid resolution. In these sharp interface methods, the interface clearly demarcates two
regions of the computational domain and retains the jumps in material and flow quantities
as sharp discontinuities. On the other hand, in diffuse interface methods, the boundary is
eventually treated as a special region in a single fluid, which occupies the entire compu-
tational domain, and the discontinuities across the interface are smoothed. The influence
of the boundary in these methods is transmitted to the fluid through source terms in the
transport equations. Typically, this boundary effect is distributed over a few mesh cells [3],
surface forces are converted to volume forces [6], and jump discontinuities are enforced
only in an integral sense. An additional issue present in diffuse interface methods is the
presence of parasitic flows, which can be problematic when the source term representing the
interfacial effects (such as capillary forces) becomes stiff [56]. In sharp interface methods
on the other hand, the effect of the boundary is accounted for through direct application of
the appropriate boundary condition(s) on the immersed boundary and parasitic flows are
not created [27].

It is important to make a distinction between the methodology used to track the boundary
motion and that used to incorporate the influence of the boundary on the fluid phase. There
are diffuse interface methods that retain the diffuse nature of the interface both in tracking the
boundary as well as in solving the flowfield, such as the volume-of-fluid [6] and phase-field
methods [55]. These can be considered as purely Eulerian methods. The level-set method
[33] in which the interface is tracked by advecting a distance function is one Eulerian tracking
method in which a sharp interface treatment can be devised for boundary representation in
solving the flow equations, as in Houet al. [17]. Thus, such level-set–based methods can
be considered to be “mixed”; i.e., they possess the characteristics of Eulerian (for tracking)
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as well as sharp interface (for boundary interaction with the flowfield) approaches. There
are other mixed methods in which the boundary is tracked as a sharp, Lagrangian entity,
while it is treated as diffuse in accounting for the effect of the immersed boundary on
the fluid phase. An example in this category is the immersed boundary method [36, 49].
Thus, boundary tracking and boundary representation must be considered distinct issues in
classifying methods for solving moving boundary problems. However, in order to qualify
as a true sharp interface method, a method has to track the interface as a sharp entity and
also treat it as such when discretizing the flow equations in the presence of the moving
immersed boundary.

Methods in all the aforementioned categories have been used successfully for simulating
a variety of thermal transport and fluid flow problems including solidification [22, 24, 44,
48], bubble dynamics [42, 47, 49], cell mechanics [12, 23], fluid–structure interaction [41],
and complex turbulent and transitional flows [15, 50]. Diffuse interface methods have been
the primary choice for solving flow problems with evolving fluid–fluid boundaries. The
exception is the immersed interface method applied by Leveque and Li [27] for fluid–fluid
boundaries evolving in creeping flows. This method tracks the immersed boundaries as sharp
interfaces and accounts explicitly for jump discontinuities at the immersed boundaries in the
discretization of the elliptic equations. In the presence of immersed solid boundaries, where
boundary layers form on the immersed boundaries, and for flows that are driven primarily
by the boundary motion, it is especially important to minimize the discretization error near
the boundaries. For such flows, sharp interface methods have an advantage since one source
of error, namely that incurred in boundary representation, is eliminated. Additionally, the
boundary conditions are applied exactly as in body-fitted grid formulations and thus there
is no spreading of the interface effects.

The advantage of representing the immersed boundary as a sharp interface in solidification
problems has been clearly demonstrated in Udaykumaret al.[47] where a finite-difference,
sharp interface, Cartesian grid method was developed for simulating the evolution of solid–
fluid phase boundaries driven by diffusion of heat. Complex, dendritic crystal structures
were computed and a careful analysis of the errors accruing during the calculations was
performed. It was demonstrated there that the field equations were computed to second-
order accuracy while the interface evolution was captured with first-order accuracy. Despite
the use of a finite-difference formulation, which does not explicitly conserve fluxes, it
was found that the interface dynamics was simulated in an accurate manner and this was
attributed to the dominance of diffusion in the process and to the sharp representation of the
interface. Following this, in Yeet al. [58], a finite-volume-based, sharp interface Cartesian
grid method which was designed to simulate convection-dominated flows with complex,
stationary, immersed boundaries was presented. The switch to a finite-volume technique was
prompted by the need to compute accurately the transport of mass and momentum in thin
boundary layers that formed on the immersed boundaries in these flows. It was demonstrated
that the flow was computed to second-order-accuracy in space and the solution procedure
was validated by simulating a number of different flows and comparing with available
experimental and computational results.

In the method presented in this paper, the Cartesian grid method of Yeet al. [58] is
extended in order to allow for the motion of the immersed boundaries. Thus, the spatial
and temporal discretization scheme in the current method is for the most part, identical to
that presented in Yeet al. [58]. The moving boundary is represented as a sharp interface
using an Eulerian–Lagrangian approach and the interface tracking procedure is adopted
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from Udaykumaret al. [48]. However, representation of a moving immersed boundary
as a sharp interface in these flow simulations leads to some unique problems in terms
of accuracy, complexity, and conditioning of discrete operators, and these have to be ad-
dressed in order to develop a method which is robust and accurate. Discussion of these
issues and validation of the numerical results against experiments forms the subject of this
paper.

The first issue that emerges is the proper implementation of the fractional-step method
and associated boundary conditions in the context of the current sharp interface method. It
is found that the correct splitting of the Navier–Stokes equations for the current approach
is similar to that which would be employed in a purely Lagrangian method. The pressure
boundary condition, which is required for the solution of the pressure Poisson equation,
is also reformulated in a manner consistent with the Lagrangian nature of the interface.
One problem that is unique to all sharp interface methods is the appearance of what can
be termed as “freshly cleared” cells. These are cells that were in the solid at one time
step but emerge into the fluid at the next time step as a result of the boundary motion.
These cells do not have any history in the fluid and time derivatives for these cells cannot
be constructed in a straightforward manner [5, 28]. This situation is not encountered in
Lagrangian methods since the grid is confined to the fluid region and moved as the bound-
ary moves, so that no computational points lie inside the solid at any time. However, in
Lagrangian methods, upon grid adaptation, computational points do change position, and
the field is then projected from the old grid locations to the new. The information at these
newly introduced points is drawn from old computational points lying only in the fluid.
The freshly cleared cell situation is also not encountered in diffuse interface methods since
there is no clear distinction between the cells on either side of the immersed boundary and
all cells have a well-defined, continuous, albeit smoothened, time history. Thus, for sharp
interface methods, a systematic and consistent discretization procedure needs to be devel-
oped for such cells which change from solid to fluid; this will be discussed in the current
paper.

This paper also addresses the issue of speedup of the pressure Poisson equation (PPE)
solver in the presence of arbitrary moving boundaries on the fixed mesh. In Yeet al. [58]
a Line-SOR preconditioned BiCGSTAB (biconjugate gradient stabilized) algorithm was
used and was found to be adequate for complex stationary boundary problems. However,
for moving boundary calculations, the convergence acceleration of this method was found
to be inadequate. The multigrid method, which is most effective for speedup of the elliptic
PPE, would seem a logical choice for the current structured grid solver. However, straightfor-
ward implementation of the multigrid method requires the reconstruction of the immersed
boundary at every coarse multigrid level, which can significantly increase the complexity
of the multigrid scheme. We overcome this problem by using a volume–fraction approach
to discretize the Poisson equation at the coarse level, while retaining a sharp interface at the
finest level.

The applications targeted with this method are wide-ranging and include fluid–structure
interaction, multiphase flows, solidification dynamics, and cell mechanics. However, in the
current paper, the solver is validated by simulating two flows, both of which involve moving
solid boundaries. The computed results are then compared with available experimental and
numerical data. In addition, a case with multiple moving solid boundaries is simulated in
order to demonstrate the capabilities of the current numerical method.
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2. THE NUMERICAL METHOD

The key aspects of the algorithm include:

1. A fractional-step scheme [10, 13], which results in a fast solution of unsteady flows.
2. Adoption of a compact interpolation scheme [58] near the moving immersed bound-

aries, which allows us to retain second-order-accuracy and conservation property of the
solver.

3. A full approximation storage multigrid technique [7, 52] with line-SOR smoothing,
which substantially accelerates the convergence of the pressure Poisson equation (PPE)
with/without immersed boundaries in the domain.

These aspects are described in detail in the following sections.

2.1. Governing Equations and Flow Configuration

The schematic in Fig. 1 shows a solid with a curved boundary moving through a fluid,
which illustrates the typical flow problem of interest here. The equations solved are the
incompressible Navier–Stokes equations. The nondimensionalized, integral form of these
equations is given by ∫

S

Eu · n̂ dS= 0 (1)

St
∂

∂t

∫
V

Eu dV+
∫
S

Eu (Eu · n̂) dS= −
∫
S

pn̂ dS+ 1

Re

∫
S

∇ Eu · n̂ dS, (2)

whereEu andp are the nondimensional velocity and pressure, respectively; St and Re are the
Strouhal number and Reynolds number, respectively, which are defined as St= ωL

/
Uo; and

Re= UoL/ν, whereω is an imposed frequency,L the length scale,Uo the velocity scale,
andν the kinematic viscosity. In the above equations, subscriptV andSdenote the volume

FIG. 1. (a) Illustration of a moving boundary cutting through a fixed mesh. Cells traversed by the interface are
called interfacial cells and are trapezoidal in shape. Cells away from the interface are regular cells. (b) A regular
cell showing the cell-face nomenclature and cell-center and cell-face velocities.
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and surface of the control volume andn̂ is a unit vector normal to the surface of the control
volume. The above equations are to be solved withEu(Ex, t) = Eu∂ (Ex, t) on the boundary of
the flow domain whereEu∂ (Ex, t) is the prescribed boundary velocity, including that at the
moving immersed boundary. The above equations with the moving immersed boundary are
to be discretized and solved on a Cartesian mesh shown in Fig. 1. The discretization of
the above equations in the context of a stationary immersed boundary is described first.
With this as the basis, the discretization scheme in the presence of moving boundaries is
described subsequently.

2.2. Flow Solver with Stationary Immersed Boundaries

As the first step, the curved immersed boundary is represented using marker particles
which are connected by piecewise quadratic curves parameterized with respect to the ar-
clengths. Details regarding interface representation, evaluation of derivatives along the
interface to obtain normals, curvatures, and so forth, have been presented in previous pa-
pers [48, 58] and are not repeated here. Also described in earlier papers are details regarding
the projection of the immersed boundary onto the underlying fixed Cartesian mesh. This
includes determining the intersection of the boundary with the mesh; identifying the phase
(solid or fluid) of each cell; and determining procedures for obtaining a mosaic of control
volumes, which are clearly demarcated by the immersed boundary. This results in the forma-
tion of control volumes adjacent to the immersed boundary that are trapezoidal in shape, as
shown in Fig. 1. Depending on the location and local orientation of the immersed boundary,
trapezoidal cells of varying aspect ratio are formed. It should be pointed out that due to the
cell-merging operation [58], the nominal aspect ratio of the trapezoidal cells is limited to a
range between 0.5 and 1.5, which is advantageous from the point of view of conditioning of
the discrete operators. With the boundary-adjacent grid cells reconstructed in this manner,
we now turn to the discretization of the governing Eqs. (1) and (2) on this grid.

A two-step, mixed explicit–implicit fractional step scheme [31] is used for advancing the
solution of the above equations in time. The Navier–Stokes equations are discretized using
a cell-centered, colocated (nonstaggered) arrangement [39, 59] of the primitive variables
(Eu, p). In addition to the cell-center velocities, which are denoted byEu, face-center veloc-
ities EUare also computed. In a manner similar to a fully staggered arrangement, only the
component normal to the cell-face is computed and stored (see Fig. 1b). The face-center
velocity is used for computing the volume flux from each cell in the current finite-volume
discretization scheme. The advantage of separately computing the face-center velocities has
been discussed in the context of the current method in [58]. The solution is advanced from
time levelt to t +1t through an intermediate advection–diffusion step where the momen-
tum equations without the pressure gradient terms are first advanced in time. A second-order
Adams–Bashforth scheme is employed for the convective terms, and the diffusion terms are
discretized using an implicit Crank–Nicolson scheme. This eliminates the viscous stability
constraint, which can be quite severe in simulation of viscous flows. The discretized form
of the advection–diffusion equation for each cell shown in Fig. 1 can therefore be written as

St
Eu∗ − Eut

1t
1V = −1

2

∑
f

[3 Eut ( EUt · n̂ f )− Eut−1t ( EUt−1t · n̂ f )]1Sf

+ 1

2 Re

∑
f

[∇u∗ + ∇ut ] · n̂ f1Sf , (3)
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whereEu∗ is the intermediate cell-center velocity and subscriptf denotes one face of the
control volume. This equation is solved with the final velocity imposed as the boundary con-
dition; i.e.,Eu∗∂ (Ex) = Eu∂ (Ex, t +1t). The intermediate face-center velocitiesEU ∗ are obtained
at this point by interpolating the intermediate cell-center velocitiesEu∗.

The advection–diffusion step is followed by the pressure–correction step in which the
following integral equation is discretized:

St
∫
V

Eut+1t − Eu∗
1t

dV = −
∫
V

∇ pt+1t dV. (4)

By requiring a divergence-free velocity field at the end of the time step the following elliptic
equation for pressure is obtained:

∑
f

∇ pt+1t · n̂ f1Sf = St

1t

∑
f

EU ∗ · n̂ f1Sf . (5)

With stationary, nonporous boundaries, a homogeneous Neumann boundary condition for
pressure results in a consistent approximation of the Navier–Stokes equations [43]. Once
the pressure is obtained by solving Eq. (5), both the cell-center and face-center velocities,
Eu and EU , are updated separately as

Eut+1t = Eut −1t (∇ pt+1t )cc (6)

EUt+1t = EUt −1t (∇ pt+1t )fc, (7)

where subscriptscc andfc indicate evaluation at the cell-center and face-center locations,
respectively. Further discussion regarding the adoption of cell-center and face-center ve-
locities can be found in Zanget al. [59] and in the context of the present method in Ye
et al. [58].

The key element in the finite-volume discretization of Eqs. (3)–(5) in the context of
the current method is the evaluation of fluxes and derivatives at the faces of each control
volume. These include momentum, mass, and diffusive fluxes and gradients of pressure.
A detailed discussion of this aspect, including validation of the accuracy of the solution
procedure, has been presented in Yeet al.[58]. For the regular Cartesian cells away from the
immersed boundary, the fluxes and pressure gradients on the face centers can be computed
to second-order accuracy by assuming a linear variation between adjoining cell centers.
This is not the case for a trapezoidal boundary cell since the center of some of the faces
of such a cell may not lie halfway between neighboring cell centers. This is seen from
Figs. 2b and 2c, where the locations where fluxes are evaluated are indicated by the filled
arrows. A linear approximation would not provide a second-order-accurate estimate of
the gradients. Furthermore, some of the neighboring cell centers do not even lie on the
same side of the immersed boundary and therefore cannot be used in the differencing
procedure. Thus, a different approach is needed in order to discretize the equations in these
cells.

To maintain second-order-accurate discretization in the boundary cells [58], we employ
a compact two-dimensional polynomial interpolating function which allows us to obtain
the fluxes and gradients on the cell faces of the trapezoidal to second-order-accuracy. For
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FIG. 2. Illustration of stencils for evaluation of cell face fluxes. (a) Interfacial cell nomenclature showing flux
components required in the discrete form of the conservation laws.F represents the flux (convective/diffusive) at
each cell face. (b) Stencil points for linear–quadratic interpolation to obtain the fluxFw andFe. (c) All the stencil
points used to calculate fluxes for the control volumeP.

instance, for a typical trapezoidal cell shown in Fig. 2a the interpolating function for a
generic variableφ has the form

φ = c1xy2+ c2y2+ c3xy+ c4y+ c5x + c6. (8)

The unknown coefficients in this interpolant can be expressed in terms of surrounding
nodal and boundary values. Using this, the fluxes and gradients on the cell faces can also
be expressed in terms of the neighboring nodal and boundary values. For instance, for the
lower portion of the west face of the trapezoidal boundary cell shown in Fig. 2b, the value
and gradient ofφ at the face center can be expressed as

φb
w =

6∑
j=1

α jφ j and

(
∂φ

∂x

)b

w

=
6∑

j=1

β jφ j , (9)

where the coefficientsα andβ depend on the geometry of the cell and couple the value at the
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face center to four nodal and two boundary values. Similar expressions can be constructed
for the fluxes on the other faces of the trapezoidal boundary cells. These expressions are
incorporated into the discrete representation of Eqs. (3)–(5) and the final discrete equation
for any given cellP is of the form as

∑
M

AP
M φM = RP, (10)

whereφ is the variable under consideration (velocity or pressure),R is the source term for
the corresponding equation,M is the size of the stencil, and theAs are the known coefficients
that depend on the geometry of the cell and other flow parameters. For a regular Cartesian
cell M = 5, whereas for a trapezoidal boundary cellM = 9. A typical 9-point stencil for
a boundary cell is shown in Fig. 2c. Furthermore, as the stencil in Fig. 2c indicates, the
boundary conditions are directly incorporated into the flux calculation procedure. Cells that
lie inside the solid are treated within the framework of Eq. (10) simply by puttingRP ≡ 0
and zeroing out all the coefficients on the left-hand side of Eq. (10) that couple the value of
cell P with the neighboring values.

This interpolation scheme coupled with the finite-volume formulation guarantees that the
accuracy and conservation property of the underlying algorithm are retained even in the pres-
ence of arbitrary-shaped immersed boundaries [58]. As pointed out earlier, in convection-
dominated flows relatively thin boundary layers are expected to be generated in the vicinity
of the immersed boundary. These boundary layers not only are regions of high gradients
but often are the most important features of the flow field. Therefore, accurate representa-
tion of the conservation laws is especially important in this region. The combination of a
finite-volume approach and a locally second-order discretization that is employed here is
therefore well suited to such flows. This method has now been extended to include moving
boundaries, and the modification and additions in the algorithm required to accomplish this
are described in the following sections.

2.3. Flow Solver with Moving Immersed Boundaries

The objective in the following sections is to describe the Cartesian grid methodology in the
presence of moving solid boundaries. The first element in such cases is the determination of
the boundary motion and the procedure for coupling the boundary motion with the fluid flow.
As mentioned before, the immersed boundary is defined by “marker particles” distributed
on the boundary surface with a spacing which is of the same order of magnitude as the grid
spacing. Translating each marker particle with a prescribed velocity produces boundary
motion. Subsequently, at any time instant, for a given location of these marker particles,
a smooth representation of the entire boundary can be constructed by fitting piecewise
quadratic polynomials through these particles.

As in the stationary immersed boundary case, a mixed-explicit scheme is used for time
advancement of the governing equations where the convection terms are treated explicitly
and the viscous terms implicitly. In cases where there is a two-way interaction between the
flow and the moving boundary, a choice also needs to be made regarding the treatment of
this coupling. One choice is explicit treatment where the boundary motion and the time
advancement of the flow equations are carried out in a sequential manner. The alternative
is implicit treatment where the boundary and flow are advanced in time simultaneously in
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a fully coupled manner. The primary advantage of the implicit approach is that it removes
any stability constraints associated with the boundary motion [18, 46]. This can be crucial
in problems where the boundary motion is highly sensitive and closely coupled to the
flowfield such as in curvature-driven solidification and capillarity-driven flows. In fact, in
the previous work of Udaykumaret al.[48], which focused on using a Cartesian grid method
for solving diffusion controlled dendritic growth, implicit coupling was employed and this
resulted in a robust solution technique. Implicit coupling, however, provides no significant
advantage when the boundary motion is prescribed independent of the flowfield since in this
case, the boundary motion is not subject to errors that can grow in time. In fluid–structure
interaction problems, where the boundary motion depends on the flow (for instance, in
flow-induced vibrations), explicit coupling results in a convective-type stability constraint
on the boundary motion, which can be relieved by employing an implicit treatment of the
boundary motion. However, since an explicit scheme is being used here for the convective
terms in the transport equations, there is no significant advantage to using implicit coupling
between the boundary motion and the fluid flow. In the current methodology an explicit
boundary update is therefore employed. However, as shown in Udaykumaret al. [48], if
needed, a predictor–corrector approach can be employed to implement an implicit coupling
in a straightforward manner.

The first step in the time-advancement procedure is to update the location of the boundary.
At any given timet , the immersed boundary is denoted byEx = Eψ(s, t), wheres is the
arc length along the boundary measured from a reference point. This is accomplished by
advecting each marker particle with the prescribed velocity as

EXi (t +1t) = EXi (t)+1t Eui (t +1t), (11)

wherei corresponds to the index of the marker particle andEui is the velocity of this marker
particle. The updated position of the marker particles is then used to reconstruct the boundary
at time (t +1t). Note that in advancing the boundary, the boundary velocity at (t +1t) is
used. As will be pointed out later, this allows consistency between the boundary velocity
and the velocity boundary condition for the fluid.

With the boundary location at (t +1t) now known, the discretized advection–diffusion
equation, Eq. (3), can be rewritten as

St

( Eu∗ − Eut+1t

1t

)
1Vt+1t = −

∑
f

1

2
[3Eut ( EUt · n̂t+1t )− Eut−1t ( EUt−1t · n̂t+1t )] f1St+1t

f

+ 1

2 Re

∑
f

[(∇ Eut +∇Eut+1t ) · n̂t+1t ] f dSt+1t
f , (12)

where the superscriptt +1t on the cell volume(1V), surface areas(1S), and normals
(n̂) indicates that the values corresponding to the boundary location at time levelt +1t ,
i.e., Ex = Eψ(s, t +1t), are used in advancing the advection–diffusion equation fromt to
t +1t . Equation (5) for the pressure is reformulated as

∑
f

[∇ pt+1t · Ent+1t ] f1St+1t
f = St

1t

∑
f

[ EU ∗ · n̂t+1t ] f1St+1t
f . (13)
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As before, the summations in the above equations run over the sides of the given compu-
tational cell. Subsequently, the pressure correction is added to the intermediate velocity as
shown in Eqs. (6) and (7).

In keeping with the stationary boundary algorithm, the advection–diffusion equation (12)
is solved with a boundary condition corresponding to the final velocity, i.e.,Eu∂ (ψ(s, t +
1t), t +1t). This boundary condition is consistent with the boundary motion since the
boundary is also moving at this same velocity as shown in Eq. (11). Therefore, the no-
slip, no-penetration condition is properly imposed at every time step even in the moving
boundary case.

The pressure boundary condition also needs to be reformulated for the moving boundary
case. For stationary immersed boundaries,∂p/∂n = 0 is applied on the immersed boundary.
This boundary condition is consistent with the inviscid nature of the pressure correction
step and is found to work adequately in most cases. In the moving boundary case, the
corresponding pressure boundary condition can be obtained from projecting the inviscid
momentum equation in a direction normal to the boundary. This gives

∂p

∂n
= −

(
St
∂ Eu
∂t
+ Eu · ∇ Eu

)
· n̂

as the boundary condition for pressure. A convenient means of implementing this boundary
condition in the current solver comes from recognizing that the boundary condition can be
recast as

∂p

∂n
= −St

D Eu
Dt
· n̂.

The material derivative of the velocity (denoted byD/Dt) can then be approximated directly
from the known boundary velocities and this obviates the approximation of the convective
term. For small boundary acceleration, which corresponds to St¿ 1, this term causes little
deviation from the homogeneous Neumann condition for pressure.

In the present framework, when stationary solid boundaries are embedded in the domain,
as with any pressure correction methodology, explicit mass conservation is enforced over the
domain boundaries. When deformable solid boundaries are present inside the computational
domain, the mass conservation enforced at the domain boundaries should take account of
the net mass flux at the moving boundaries caused by the boundary deformation. The net
mass flux arising at the moving interfaces is given by

ṁint =
nb∑
j=1

∫
Sj

ρ Eu∂ · n̂ dS, (14)

wherenb is the number of immersed boundaries and the integral is performed over the
surface of the immersed boundary. At each step, the mass deficit over the domain boundaries
is evaluated as follows:

ṁdeficit=
ninlets∑

j=1

ṁj −
noutlets∑

j=1

ṁj − ṁint. (15)

This mass deficit is distributed evenly at the designated outflow boundary through adjust-
ment of the intermediate velocity boundary condition. In the context of the current paper,
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this deficit correction is applied in the problems involving the moving indentation and the
diaphragm-driven pump as presented under Results, Sections 3.2 and 3.4, respectively. In
the case of the oscillating cylinder problem in Section 3.3, no net efflux of mass results at
the moving boundary and hence the moving boundary does not have any impact on global
mass conservation.

It is worth pointing out that the form of Eqs. (12) and (13) is virtually identical to (3)
and (5). The primary difference is that for the trapezoidal boundary cells, the cell volume,
surface area, and directions of the surface normals are now functions of time. Furthermore,
the boundary conditions have to be reformulated in order to account for the time-dependant
motion of the immersed boundary. However, unlike Lagrangian methods, time derivatives of
the cell volume and surface area do not appear in the equation. In this respect, the simplicity
of the Eulerian approach is retained. In the context of the current method, this implies
that the discretization of Eqs. (12) and (13) at any given time step is virtually identical
to the stationary boundary case. Thus, the spatial discretization methodology described in
Section 2.2 can be used even with moving boundaries. The primary difficulty in the moving
boundary algorithm comes from the appearance of “freshly cleared” cells (this issue is
discussed in the next section).

2.4. “Freshly Cleared” Cells

In sharp interface methods, such as the present one or those presented by Bayyuket al.[4]
and Leveque and co-workers [5, 27], the issue of change of material needs to be addressed.
This arises when a computational point (as in Fig. 3), which was in the solid at one time
step, emerges into the fluid at the next time step. In Leveque and Li [27], the issue of a
discontinuity in time at cross-over is dealt with by applying a jump condition in time to
the time-derivative term on the LHS of equations such as Eq. (12). For certain problems
this temporal jump condition is physically clear. For instance, in solidification problems,
the temporal jump condition for the enthalpy in a given control volume is simply the latent
heat released within that volume. In the present fluid-structure interaction problem, such
a physics-based jump condition is not available for the velocity field. Since the cellP

FIG. 3. Change of material as the immersed boundary traverses the mesh. (a) Configuration in which the
interface is nearly horizontal and (b) Configuration in which the interface is nearly vertical.
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was previously in the solid and it had no history in the fluid phase, there is no physically
realizable value ofEut

i, j . Thus, Eq. (14) is not applicable for such cells.
In the current method, an approach similar to that used in the finite-difference method

of Udaykumaret al. [48] is employed. This consists of temporarily merging the freshly
cleared cell with a neighboring cell and is analogous to the approach taken in moving grid
formulations when a new cell is inserted following mesh refinement. In the current finite-
volume-based methodology, this cell-merging is realized through a simple one-dimensional
interpolation operation and this can be explained here for the particular freshly cleared cell
shown in Fig. 3a. For this cell, the following interpolant is used,

u∗(y) = a0+ a1y+ a2y2, (16)

where, the coefficientsa0, a1, anda2 are coefficients that depend on the value ofEu∗ at P,
N, and the boundary locationB, and the corresponding locations of these points. A similar
procedure can be followed for the situation illustrated in Fig. 3b. The above dependence
can therefore be recast in the form∑

M

BP
Mu∗M = 0, (17)

and for this cell, Eq. (17) replaces the discretized advection–diffusion equation (12). Note
that Eq. (17) is applied only at the instant when there is a crossover. Following that instant,
Eq. (12) is again used to time step theEu∗ field. Note also that since pressure depends only
on theEu∗ field, Eq. (13) is still valid for these cells as long asEu∗ can be computed through
some appropriate means, such as Eq. (17).

2.5. Fast Solution of Discretized Equations

The general form of the discretized equations to be solved at each time step is given in (10).
The term on the left-hand side of this equation represents a discretized Helmholtz operator
in the case of the advection–diffusion equation and a Laplacian operator in the case of the
pressure Poisson equation. The standard alternating-direction line successive–overrelaxation
(SOR) proves extremely effective for the solution of the discretized advection–diffusion
equation and the residual can be reduced to acceptable levels within a few iterations. How-
ever, the discretized pressure Poisson equation (PPE) exhibits significantly slower conver-
gence. In fact, due to its slow convergence, the solution of the discretized pressure equation
is usually the most time-consuming part of a fractional-step algorithm. In the presence of
immersed boundaries, this behavior of the pressure equation can be further exacerbated
since the discrete operator for the trapezoidal cells requires a stencil that has significant
dependence on neighbors which are not included in the line-SOR sweeps. For example, in
Fig. 2c the coupling of the cell with its northeast and southwest neighbor is not included
directly in any of the line-sweeps. Furthermore, discretization in the irregularly shaped
boundary cells results in weaker diagonal dominance than in the regular cells and this has
a deleterious effect on the convergence of any iterative scheme.

In Ye et al. [58], a line-SOR preconditioned BiCGSTAB iterative method was employed
and was found to be significantly faster than a simple line-SOR algorithm. Furthermore,
for the stationary boundary problems that were simulated there, it was found that this it-
erative method allowed us to obtain the solution of most problems in a reasonable amount



358 UDAYKUMAR ET AL.

of time. However, BiCGSTAB is inadequate when applied to moving boundary problems.
As the boundaries move, the geometry of the domain changes and the elliptic nature of the
PPE induces global readjustments of the pressure field. Thus, changes in the pressure field
for moving boundary problems can be more significant than for the stationary boundary
cases. Thus, the pressure from the previous time step is a much poorer guess for boundary
cells in the moving boundary case than it is in the stationary boundary case. Consequently,
the starting residual for the PPE in the boundary cells is generally higher in the moving
boundary case and considerable effort is therefore required to reduce these to acceptable
levels.

One of the most effective methods devised for these types of problems is the multigrid
method [52]. The key elements of a multigrid procedure are (i) an appropriate “smoother,”
(ii) grid coarsening, (iii) restriction, (iv) prolongation, and (v) multigrid schedule. A number
of alternatives are available for each of these steps and the reader is referred to Wesseling
[52] and Briggs [7] for surveys. The implementation of a standard multigrid algorithm into
the current solver would at first glance also seem straightforward given the simple mesh
topology. However, the presence of a sharp immersed boundary presents a unique difficulty
in this implementation. This issue is explained here with the help of the schematic shown
in Fig. 4.

An integral part of the multigrid procedure is grid coarsening. In structured grid methods,
the grid is typically coarsened by a factor of 2 or more at each multigrid level. However,
representation of geometrical features such as that shown in Figs. 4a and 4b requires appro-
priate resolution in the underlying Cartesian grid. Our experience with this method indicates
that if the radius of curvature of a geometrical feature isr , then acceptable representation
of the feature requires a grid spacing, which is smaller thanr/2. This provides an upper
limit on the grid spacing in the vicinity of any geometrical feature, and the grid spacing is
always chosen to ensure adequate representation of all geometrical features. In the current
Cartesian grid method, there then arises the possibility that a given geometrical feature
of the immersed boundary will not be resolved on one or more of the coarse-grid levels.
This will happen in the case where the grid spacing of a coarse grid is greater thanr/2 in
the vicinity of a geometrical feature with radius of curvaturer . To some extent, a similar
problem would in principle also exist for a body-conformal, structured grid. However, one
simple remedy there would be to resort to semi-coarsening [52], where the coarsening is not
done along the family of grid lines that is aligned with the boundary. This remedy, however,
is not available for the current solver since there is no unique family of grid lines that is
aligned with the immersed boundary.

One alternative approach would be to develop a multiscale representation of the immersed
boundary such that as the grid is coarsened, the geometrical features of the immersed bound-
ary are also appropriately coarsened. However, this approach has a number of undesirable
features. First, developing a robust algorithm for multiscale representation of the boundary
is a nontrivial proposition because of the variety of situations that would have to be tackled.
One simple case where difficulty may arise is when there are multiple distinct features (or
bodies) that are relatively close to each other. On a coarse grid, where the grid spacing is
larger than the distance between these distinct boundaries, a coarse representation of such
boundaries would necessarily lead to merging of these boundaries. Just how such a merging
would be implemented into the multigrid algorithm is unclear. Second, even if a multiscale
representation of the boundary could be constructed, the prolongation and restriction oper-
ations would be extremely complicated for the boundary cells. Furthermore, a wide variety
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FIG. 4. Illustration of the effect of coarsening of the mesh on the interface representation in the multigrid
solution of the Poisson equation. Arrows show information transfer. Filled circle is the coarse mesh point. Open
circles are fine mesh points. (a) The fine mesh level with sharp interface embedded. (b) The coarse mesh with
embedded boundary. Four sample cells are shown shaded with different behavior of the sharp interface with respect
to the coarse mesh. (c1) to (c4) Illustration of the interaction of the sharp interface with the fine mesh for cells
marked 1 to 4 in (b). (d1) to (d4) Representation of the interface on the coarse mesh corresponding to the cases
(c1) to (c4). Shaded fine cells are taken to be solid cells.

of such cells will be encountered thereby eliminating the possibility of devising systematic
restriction and prolongation procedures for such cells.

It should be pointed out that there have been previous efforts at developing multigrid
methods in domains with internal structure, such as when the coefficients for the transport
are discontinuous [1]. However, the problems tackled in the present paper cannot make
use of these methods since, in the present case, the pressure field in not computed within
the solid regions. Therefore, the present method is not a one-domain solution of an elliptic
equation with discontinuous coefficients, but rather the solution of an elliptic equation in a
domain with embedded “holes.” Webster [53, 54] has presented an algebraic multigrid for
a Cartesian grid flow solver in which arbitrary internal geometries are introduced by cell
blocking. However, in that method, the internal geometries are aligned with the Cartesian
mesh and therefore that method is also not appropriate in the current case. Johansen and
Colella [21] also have provided a brief account of a multigrid method for solving the Poisson
equation in the presence of immersed boundaries. In the following we describe in detail the
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implementation of the multigrid in the presence of the embedded boundaries as adapted to
the finite-volume approach. In the results section, we demonstrate the convergence behavior
of the method described below.

The primary complexity in applying a multigrid technique in the current solver is asso-
ciated with retaining the immersed boundary as a sharp interface at the coarse grid levels.
Motivated by this, a multigrid algorithm has been developed wherein the boundary is rep-
resented as a sharp interface only at the finest grid level. At the coarser levels, the presence
of the boundary is accounted for only in an approximate sense through the volume fraction
of the coarse cells and no explicit reconstruction of the immersed boundary is done at these
levels. Although conceptually this approach is relatively straightforward, the key is to im-
plement it in a systematic manner so that it is applicable for the wide variety of situations
that could be encountered. Furthermore, it is also essential to ensure that this approach
does not significantly degrade the convergence properties of the multigrid algorithm. In the
following, the implementation of this multigrid technique is described and in a later section,
the convergence acceleration of this technique is demonstrated.

In order to simplify the following discussion, a uniform grid is assumed in both directions.
However, the actual algorithm has been applied to the general nonuniform case. For the
bulk of the flow domain, i.e., away from the immersed boundaries, a standard multigrid
with V- or W-cycle is used. Coarsening of the grid is performed as for simple Cartesian
meshes without regard to the immersed boundaries, so that the grid spacing at levelk is
given byhk = 2hk−1. For regular cells, away from the immersed boundary, the multigrid
solve proceeds in a standard way that involves smoothing (levelk),

∇2φk = Sk, (18)

residual computation at levelk,

∇2φk − Sk = εk, (19)

and restriction,

ε̄k+1 =
∑

M

εk
M , (20)

whereM goes over the four fine mesh cells surrounding the particular coarse mesh cells
(Fig. 4c). This is followed by coarse mesh solve,

∇2φk+1 = Sk+1 whereSk+1 = −ε̄k+1, (21)

and finally, prolongation

φk = φk + φ̃k+1, (22)

where

φ̃k+1 =
∑

M

λM φk+1
M . (23)
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In this summation,M goes over the surrounding coarse nodes (see Fig. 4d1) andλ denotes
weights corresponding to distance-weighted interpolation as shown in Fig. 4d4.

The above procedure applies in the case where there are no immersed boundaries or to
cells that are distant from the immersed boundary. Now consider a boundary defining an
immersed solid object on the finest level mesh (i.e., one where the solution is sought) and
subsequent coarsening of the mesh with the boundary shape retained, as shown in Figs. 4a
and 4b. Some situations, which may arise upon coarsening the mesh in the presence of an
immersed boundary, are indicated in Figs. 4c1 to 4c4. As shown, the fine cells comprising
the coarse cell may lie in solid or fluid phase depending on the manner in which the
sharp interface passes through the fine mesh. In defining the Laplacian operator and also in
affecting transfer between successive mesh levels, care has to be exercised in cells cut by the
immersed boundary. At the finest level, the operators are assembled as detailed in Section 2.3
above. At this level, full information on the sharp immersed boundary is retained as in
Figs. 4c1 to 4c4. In the restriction step, residuals from the fine mesh are to be interpolated
to the coarse mesh. At the coarser levels, to avoid coarsening of the embedded geometry,
the geometry is represented using a volume fraction field. In the following discussion, the
implementation procedure is described with primary focus on cells that are close to the
immersed boundary.

Any given coarse mesh cell at levelk, such as the one shown in Fig. 4b, consists of four
finer cells of levelk− 1. Assuming that, based on a set of rules [58], it has already been
determined if a given cell at levelk− 1 is in the fluid or in the solid, a procedure needs to
be developed in order to make this determination for cells at the current levelk. For each
cell at every grid level, a boolean variableβ, which has a value of one if the cell is a fluid
cell, and zero if the cell is a solid cell, is defined. Furthermore, a weighting factorω is also
defined for each contributing fine-mesh cell, which corresponds to the fractional volume
contributed by that fine cell to the coarse cell. For a uniform mesh,ω = 1/4 for any fine
mesh cell. Given these definitions, the volume fraction of fluid in a coarse cell at levelk is
estimated as (Figs. 4d1 to 4d4)

Äk =
4∑

M=1

ωk−1
M βk−1

M , (24)

where the summation runs over the four fine mesh points surrounding the coarse mesh point.
Therefore, for a coarse cell comprising of all four contributing finer level cells in the fluid
phase, the volume fractionÄk = 1.0; otherwise 0≤ Äk < 1.0. The Boolean variableβ can
now be defined at levelk based on the volume fraction of that cell as follows:

βk
i j = 1 if 0.5< Äk

i j ≤ 1.0

βk
i j = 0 if 0.0< Äk

i j ≤ 0.5.
(25)

The above definition holds for all levelsk> 1. For the finest level (k = 1) β andÄ
are determined simply based on whether the cell center lies in the fluid or solid region as
follows:

β1
i j = Ä1

i j = 0 if cell center lies in solid

β1
i j = Ä1

i j = 1 if cell center lies in fluid.
(26)
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Thus, at the finest level, the exact location of the sharp boundary is employed in constructing
the cells, whereas at the coarser levels, the presence of the boundary is incorporated into
the discretization in an approximate manner by using the fluid volume fraction information.
Equation (25) in effect implies that a coarse cell whose fluid fraction is less than 0.5 is to
be considered a solid cell. This threshold volume fraction value of 0.5 used in determining
the phase of coarse cells is not chosen arbitrarily. In almost all cases it is found that the
normalized volume of a trapezoidal boundary cell (of levelk= 1) is greater than 0.5. Thus,
the construction of the coarse cells near the boundary is consistent with that of the cells at
the finest level.

The volume fractionÄ not only allows us to construct the stencils for all mesh levels
near the boundary but also facilitates the systematic development of the restriction and
prolongation operations at all levels. This is accomplished by defining another variableγ

for each cell at every grid level, which derives its value fromÄ in the following manner:

γ k
i j = 1, if Äk = 1, i.e., for a complete fluid cell

γ k
i j = 2, if 0.5< Äk < 1.0, i.e., for a partially fluid cell

γ k
i j = 0, if 0 ≤ Äk ≤ 0.5, i.e., for a solid cell.

(27)

The restriction operation can now be accomplished at every grid level by modifying Eq. (20)
using the variablesβ,Ä, andω as

ε̄k = 1

Äk

∑
i, j

εk−1
i j βk−1

i j ωk−1
i j . (28)

Thus, only the residuals from the finer-level cells that are in the fluid phase are used in
the restriction operation. Furthermore, the contribution of each finer cell is weighted by its
fractional volume contributionω.

For the fine cells, the Laplace operator is assembled as explained in Section 2.3, by using
the compact linear–quadratic interpolant in the boundary cells. For coarse cells, the operator
is modified based on the value ofβk

i j to accommodate the volume fraction information. The
standard five-point central-difference discretization of the Laplacian is used on the coarse
level (k > 1),

αi, jφ
k
i, j + αi+1, jφ

k
i+1, j + αi−1, jφ

k
i−1, j + αi, j+1φ

k
i, j+1+ αi, j−1φ

k
i, j−1 = −ε̄k, (29)

whereε̄k is computed from Eq. (21). The nominal values of the coefficientsα in Eq. (29)
correspond to those arising from central-difference discretization of the Laplace operator on
a regular Cartesian mesh. For cells that do not adjoin the immersed boundary, these remain
unchanged. In coarse cells that are partially solid or have neighbors that are partially solid,
these have to be modified to account for the presence of the (coarsened) immersed boundary.
The volume-fraction information is used in the coarse cell discretization to construct the
coefficientsα in Eq. (29) in the manner described below. The volume-fraction-based coarse
cell representation of the four cells shown in Figs. 4c1 to 4c4 is illustrated in Figs. 4d1 to
4d4. The corresponding values ofβk

i j , computed from Eq. (25), are also illustrated in the
figure. For a coarse cellij ,

if βk
i j = 0, thenαi, j = 1, αi+1, j = αi−1, j = αi, j−1 = αi, j+1 = 0 and ε̄k = 0. (30)
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Thus, the correctionsφk
i, j are set to zero in the coarse cells with fluid fractionsÄk

i j ≤ 0.5.
These cells are treated as solid cells at the coarse grid level and therefore the correction field
on the coarse mesh is not computed in such coarse cells. On the coarse mesh, the corrections
are computed only in those computational cells whose fluid fractionÄk

i j > 0.5. Whether or
not the corrections are computed in a given cell is determined by the computational flags
γ k

i j , set in Eq. (27). Now, some of the coarse fluid cells have neighboring cells in the solid
phase, i.e., withÄ ≤ 0.5. For such coarse cells, the standard 5-point stencil in Eq. (30) is
modified to impose a Neumann boundary condition on the adjoining face. This is achieved
through the following condition:

If βk
i j = 1,

αl ,m = αl ,m if γ k
lm 6= 2 for all (l ,m), l 6= i,m 6= j, (31a)

αl ,m = 0, if γ k+1
lm = 2, for all (l ,m), l 6= i,m 6= j . (31b)

The first condition implies that if the neighbor to a side of the cell is a fluid cell, as given
by the condition in Eq. (25), then the usual central-difference coefficient is retained for that
side. If the neighbor is in the solid phase, then the coefficient for the neighbor on that side
is set to zero. This applies a Neumann condition for the correction field on that cell face.
Note that in the coarse mesh, by this procedure, the volume-fraction representation results
in a stair-stepped treatment of the embedded solid boundary. This rough representation of
the immersed boundary on the coarser meshes is an implicit coarsening of the embedded
geometry accomplished through the volume fraction variable at all mesh levels except at the
finest level, where the shape of the interface is accounted for exactly. Once the coefficients
of the neighboring cells have been computed, the coefficient of the (i, j ) cell is assembled as

αi, j = −
∑
l ,m

αl ,m, with summation overl 6= i,m 6= j . (31c)

Once the correction field at levelk is obtained, the prolongation of these corrections to the
next fine levelk− 1 is performed as follows. For a fine cell at levelk− 1 in the fluid phase,
i.e., a cell for whichβ 6= 0, the prolonged correctioñφk

i j is obtained using distance-weighted
interpolation from the surrounding coarse mesh cells as

φ̃k
i j =

1

1

∑
l ,m

κlmφ
k
lm, (32)

where the summation goes over all neighboring coarse cells,

κlm = 0, if γ k
lm = 0 (33a)

κlm =
√(

xk
l − xk−1

i

)2+ (yk
m − yk−1

j

)2
, if γ k

lm 6= 0 (33b)

and 1 =
∑
l ,m

κlm. (33c)

If βk−1
i j = 0, no correction is performed since that fine-level cell lies in the solid phase.

The procedure described above leads to a multigrid algorithm that successfully avoids
coarsening of solid immersed boundaries, while executing information transfer from fine
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to coarse meshes and vice-versa. The coarse grid calculations account for the boundary
only in an approximate manner and the effect of this on the overall convergence behavior
is examined in Section 3.1.

2.6. Overall Solution Procedure

Given the velocity and pressure field and interface position at timet , the overall solution
procedure to advance the solution tot +1t is as follows:

1. Advance the immersed boundary to its position att +1tas described in Section 2.3.
2. Determine the intersection of the updated immersed boundary with the Cartesian mesh

and using this information, reshape the trapezoidal boundary cells.
3. Update the discrete expressions corresponding to (10) for the boundary cells including

freshly cleared cells.
4. Advance the discretized equations in time:

a. Solve for intermediate velocity fieldEu∗.
b. Solve for pressure from Eq. (13) using the multigrid technique.
c. Correct the velocity field as in Eq. (6)–(7) to obtain velocity field att +1t .

This completes the description of the current simulation methodology. It should be pointed
out that although the methodology has been described only in the context of 2-D geometries,
the approach developed here can be extended to three dimensions. The key aspects to be
addressed in extending this methodology to 3-D are efficient methods for representing
curved 3-D interfaces and reconstructing boundary cells [20, 25]. Apart from these aspects,
the discretization procedure described here carries over into 3-D in a straightforward way. In
the following sections the focus is on examining the performance of the multigrid algorithm,
validating the solution methodology by comparing computed results with experiments, and
demonstrating the capabilities of the method for simulating flows with complex immersed
moving solid boundaries.

3. RESULTS

3.1. Multigrid Performance with Immersed Boundaries

The performance of the multigrid algorithm outlined above is first examined in the
presence of immersed boundaries by comparing it to a case which does not include immersed
boundaries. This is accomplished by computing flow through a channel with increasing
geometric complexity introduced by inserting immersed boundaries into the domain (see
Fig. 5). The first case (Fig. 5a) is that of a simple channel flow with no internal immersed
boundaries. The complexity of the domain is increased by introducing cylinders into the
channel and the second, third, and fourth cases include 1, 5, and 11 cylinders (each of radius
0.05) in the channel, respectively. A staggered-array type configuration is chosen and the
geometry of this array is shown in Fig. 5b. Note that in the present Cartesian grid method,
the mesh remains unchanged as immersed boundaries are successively embedded in the
domain. The inlet flow for all cases corresponds to a Reynolds number of 100 defined on
the channel height (H) and inlet velocity. The streamwise length of the channel is equal
to 5H and in all cases a uniform 400× 80 grid is used. The convergence acceleration of
the multigrid scheme is compared for these various cases for the first time step, given an
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FIG. 5. Illustration of the setup for channel flow computation as a test of the multigrid algorithm. (a) A channel
without immersed boundaries. (b) A channel with immersed boundaries. First, the channel walls are immersed in
the computational domain. Thereafter, cylindrical obstructions are successively added in the domain.

initial condition of Eu = (1, 0) and p = 0. In each case, we report on the behavior of a
multigrid run with a V-cycle consisting of one LSOR iteration at the finest level and three
iterations at each coarse level. Through numerical experimentation, this schedule was found
to yield the optimal convergence behavior for a number of different flow configurations.
The convergence history for cases 1 (no cylinders) and 4 (11 cylinders) is shown in Fig. 6
and results for all cases are presented in Tables I and II. Table I contains information about
the actual speedup (CPU time) produced by the multigrid technique whereas in Table II
the numbers of iterations at the finest level are presented. In both tables, all values are
normalized by the corresponding value observed for the convergence without multigrid for
the particular case.

Figure 6a shows the convergence history for the first case, where the only immersed
boundaries are the channel walls. This is the baseline case, which should exhibit the
performance of a standard multigrid algorithm. The pressure Poisson equation has been
solved with one-, two-, and three-level multigrid schedules and Fig. 6a clearly shows the
convergence acceleration achieved by the multigrid algorithm. The corresponding num-
bers in Tables I and II show that the CPU time required for two- and three-level multi-
grid schedules is only 21 and 7.8%, respectively, of the CPU time required by the ba-
sic LSOR scheme. In terms of iterations, the two- and three-level multigrid schedules
require only 17 and 5.6% of the number of iterations required by the baseline LSOR
scheme. The slight mismatch between the iteration reduction and the CPU reduction is
due to the CPU time associated with the computation at the coarse grid levels. Figure 6b
shows the corresponding convergence behavior for the most complex case, where there
are 11 cylinders, and a number of observations can be made regarding this figure. First,
the convergence acceleration with increasing grid level for this case is comparable to that

TABLE I

CPU Times for the Multigrid Solver for the Pressure Poission Equation

Channel Channel with Channel with Channel with
Levels (no cylinders) 1 cylinder 5 cylinders 11 cylinders

1 1.000 1.000 1.000 1.000
2 0.210 0.163 0.136 0.158
3 0.078 0.045 0.034 0.035

Note.The CPU times in each case have been normalized by the single-grid LSOR time.
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TABLE II

Number of Fine-Level Iterations for the Multigrid Solver

for the Pressure Poisson Equation

Channel Channel with Channel with Channel with
Levels (no cylinders) 1 cylinder 5 cylinders 11 cylinders

1 1.000 1.000 1.000 1.000
2 0.170 0.137 0.118 0.153
3 0.056 0.035 0.028 0.030

Note.The iterations in each case have been normalized by the single-grid LSOR iterations.

observed for the simple channel case. This is indeed confirmed in Tables I and II, where
it is shown that the CPU times required by the two- and three-level multigrid sched-
ules for this case are about 16 and 3.5%, respectively, of the baseline LSOR scheme.
A similar convergence acceleration behavior is also observed for the cases where there
are one and five cylinders. This numerical experiment therefore indicates that increasing
geometrical complexity and the associated approximate correction procedure, adopted at
the coarse levels, do not degrade the convergence behavior of the underlying multigrid
method.

It is also observed in Fig. 6b that, overall, the number of iterations required for the
case with no cylinders is much lower than that required in the case where there are 11
cylinders. This is because increasing complexity in the domain can be expected to always
increase the effort required to converge the pressure Poisson equations since the pressure
field has to satisfy the Neumann boundary condition at multiple boundaries in the domain.
Note that comparison of convergence rates for a given case with increasing grid level is
straightforward. On the other hand, comparisonbetweenthe various cases has to be done
with the realization that the distribution of the starting residual, even with the same initial
guess, might be quite different. However, the objective of the current set of calculations is

FIG. 6. Covergence path for the PPE using LSOR preconditioned multigrid. The number of levels is indicated.
The convergence residual was specified to beε = 10−5. (a) The case of channel flow with channel walls as
immersed boundaries. (b) The case of channel walls as immersed boundaries and with 11 immersed cylindrical
obstructions.
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to compare therelativeconvergence behavior of the multigrid with increasing complexity,
and this comparison can be made clearly despite the difference in the starting residuals.

In addition to the cases presented in this section, several cases with complex domains
and moving boundaries, including those presented in the following sections, have been
computed using the present multigrid technique. In each case the multigrid has yielded
substantial acceleration of the solution to the Poisson equation.

3.2. Convergence with Mesh Refinement for a Moving Boundary Calculation

We now present an analysis of the variation of solution error with grid refinement in order
to establish the overall order of accuracy of the numerical method. This study is performed
for the case where a solid moving boundary is immersed in a fluid enclosed within a domain
with solid no-slip walls. The flow situation can be visualized from Fig. 7a. The cylinder
of diameterD = 1.37 units was placed initially at the center of the box of dimension
2.7× 2.7 units and oscillated horizontally with a nondimensional time period of 1 and an
amplitude of 0.25D. The oscillation was effected by moving the cylinder as a rigid body
with velocity given by

νx = 0.25π sin(2π t); νy = 0.

The flow for this moving boundary problem is simulated using the current solver for a
Reynolds number (with respect to the cylinder diameter) of 100. The following sequence of
grid sizes was employed in performing the error analysis: 20× 20, 60× 60, 100× 100, and
270× 270 grid points. In the absence of an exact analytical solution to this flow problem,
the results on the 270× 270 mesh was taken to be the “exact” solution in order to obtain
the error distribution for each of the coarser meshes.

The cylinder motion was impulsively started with the above velocity function. A small
time step of1t = 10−4 was chosen for all these simulations in order to minimize the effect
of temporal errors on the solution. The simulations were carried out for one oscillation
period and the velocity components at each grid point were recorded for all the meshes
under consideration at the end of this period. For a givenN × N mesh, the nth norm of the
error was computed as

εn =
(

1

N2

N2∑
j=1

∣∣φ(N)j − φ(270)
j

∣∣n)1/n

,

whereφ(N)j denotes a generic computed variable (x-velocity component in this case) on the
N × N mesh, andj is the index of the grid cell on this mesh.

The results of the analysis are presented in Fig. 7. Figure 7a shows the flowfield developed
due to the moving cylinder in the box, at a time corresponding to 1/10 of the period of
oscillation, at which time the cylinder is moving to the right. This flow calculation was
performed on the 270× 270 mesh. The streamlines of the flow induced by the moving
cylinder and thex-velocity contours are shown in Fig. 7a. The presence of significant
velocity gradients in the boundary layers adjoining the moving cylinder can be seen in the
contour plot. Furthermore, due to the closed domain in which the cylinder moves and to
the incompressibility constraint, a recirculating flow is created with streamlines emerging
from the leading side of the cylinder and attaching at the trailing side. In Fig. 7b we
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FIG. 7. (a) Computational domain, streamlines, andx-velocity contours for a cylinder oscillating in a box
computed on the 270× 270 mesh. (b) The error distribution inx-velocity for a 20× 20 mesh. (c) The error
distribution for the 60× 60 mesh. (d) The convergence behavior of the error norms. TheL∞ andL1 norms are
shown along with the reference (dashed) line corresponding to second-order convergence.

show the distribution of the local error|φ(N)j − φ(270)
j | for the coarsest 20× 20 mesh. The

magnitudes of errors are labeled on a few contours and it can be observed that the errors
are clearly concentrated in the region surrounding the cylinder where significant gradients
exist. Figure 7c shows the error distribution for the 60× 60 mesh. Again, the errors appear
to be concentrated in the boundary layer region; however, as expected, the magnitude of
the error is lower than that in Fig. 7b. Figure 7d shows the convergence behavior of the
error norms for the three meshes (20× 20, 60× 60, 100× 100) with respect to the finest
reference mesh solution. Logs of bothε1andε∞ are plotted against log(h), whereh is the
grid spacing. Also plotted is a reference line with a slope of 2 corresponding to second-
order convergence. As can be noted, the convergence rate of error in the simulations is
close to the reference line, indicating nearly second-order-accuracy. It should be pointed
out that similar behavior in the error was observed when error was analyzed at intermediate
times during the oscillation cycle. It should be noted that exact second-order-accuracy is
not expected in this test primarily because the errors are not computed based on an exact
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FIG. 8. Configuration used to validate the current method. Flow in a channel with a moving indentation. The
inflow condition is a Poiseuslle flow, Re= 507.

solution. In conclusion, even in the case of a moving boundary, the second-order spatial
accuracy inherent in the spatial discretization is maintained.

3.3. Flow in a Channel with a Moving Indentation

There are a few problems with moving solid boundaries interacting with flowfields where
detailed experimental and numerical results have been documented for use as benchmarks.
One such problem is that involving the flow in a channel with a moving indentation per-
formed by Pedley and co-workers [34, 38]. This is a model for the collapse of a blood vessel
and has relevance in cardiovascular flows. The arrangement is as shown in Fig. 8. Poisuelle
inflow condition and channel dimensions are specified in line with the experiment. The
Reynolds number is

Re= Uod

ν
= 507.

(U0 = Q0
d is the velocity scale, whereQ0 is the volumetric flow rate per unit channel depth

andd is the channel height.) The motion of the indentation is imposed in experiments by
means of a piston pushing against a rubber diaphragm. The velocity of the interface is given
by [38]:

νy(x, t) = g(x)h(t),

where

h(t) = 1

2
(1− cos(2π t)). (34)

The spatial variation is given by

=0 x1 < x < x2

=1

2
ε(1+ tan hβ(x − xo) x2 < x < x3

g(x) = ε x3 < x < x4

=1

2
ε(1− tan hβx) x4 < x < x5

=0 x5 < x < x6,

(35)
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where locationsx1 to x6 are as shown in Fig. 8. In Ralph and Pedley [38], the stream-
function vorticity method has been used along with a body-fitted moving mesh to solve the
problem. In the present method, primitive variables are used and the mesh remains fixed.
We will compare our results for this case with experiments [34] and numerical results [38].
For low Strouhal numbers, the flow behaves in a quasi-steady fashion and the sequence of
events in time as the indentation grows, corresponds to those encountered when steady-
state solutions are obtained at the different geometries and juxtaposed. The physics of the
problem is interesting for high enough Strouhal numbers, when the quasi-steady assumption
no longer holds and the full unsteady, viscous dynamics needs to be captured to reproduce
the experimental results.

For the Strouhal number chosen here, i.e., for the frequency of oscillation of the inden-
tation, the flow in the channel downstream of the indentation falls in the unsteady regime.
The squeezing of the flow in the channel propagates waves downstream of the constriction
leading to the formation and advection of vortices on both the top and the bottom surfaces
of the channel. The streamlines are shown in Fig. 9 at various instants in one cycle of mo-
tion of the indentation, for the case where St= 0.037,ε = 0.38, andβ = 4.14. Our results
reproduce almost exactly the sequence of events occurring in the experiments and agree
with the numerical results of Ralph and Pedley [38]. In Fig. 9 we show the development
of a series of eddies downstream of the moving indentation. These eddies are formed suc-
cessively in time as the disturbance propagates through the channel. In agreement with the
numerical [38] and experimental [34] results, we find that the eddy B at the top wall splits
at a nondimensional time betweent = 0.6 andt = 0.65 into three eddies. This behavior of
eddy B is shown in detail in Fig. 10. In Fig. 11, we compare the wave propagation charac-
teristics quantitatively with numerical and experimental results of Pedley and coworkers.
We show in that figure the location of the crests and troughs associated with each of eddies
B, C, and D with time. The slope of this curve gives the phase velocity of the disturbances
downstream of the indentation. Note that for eddies B and D, we measure trough position,

FIG. 9. Wave formation and propagation downstream of a moving indentation computed with the present
numerical method. The formation of the various eddies downstream of the indentation is indicated. The nondi-
mensional time instants at which the streamlines are shown are also indicated.
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FIG. 10. Splitting of eddy B downstream of the indentation. The eddy splits between nondimensional time
t = 0.6 andt = 0.65, in agreement with the experiments [34] and numerics of Ralph and Pedley [38].

i.e., x-location of the lowest point of the eddy, for C the crest, i.e.,x-location of highest
point of the eddy. As seen from the figure, the phase speed of the disturbances, as given by
the slope of thex-t curves, is captured accurately by the present method. The position and
phase velocity of the waves computed by the present method appear to match with experi-
mental results better than the numerical results of Ralph and Pedley [38]. The trifurcation
of the curves in Fig. 11 corresponds to the occurrence of multiple crests and troughs due
to the splitting of eddies B and C. The numerical results for the time and location of the
splitting of the eddies agree with the experimental results. Thus, the numerical method is
successful in capturing the full unsteady, viscous effects in the flow caused by the moving
indentation.

FIG. 11. x–t curves for the eddies labeled B, C, and D in Fig. 9g. Solid lines—present calculation; dashed
lines—numerics of Ralph and Pedley [38]; symbols—experiments of Pedley and Stephanoff [34]. Thex-locations
correspond to the respective crests and troughs of the eddies downstream of the moving indentation. The trifurcation
of eddy B is also tracked and the locations of the three eddies formed after splitting are also plotted.



372 UDAYKUMAR ET AL.

3.4. Vortex Shedding from an Oscillating Cylinder in Uniform Free Stream

The second flow configuration that has been chosen to validate the current computa-
tional technique is flow past a transversely oscillating circular cylinder and the associated
phenomenon of vortex shedding “lock-on.” Vortex shedding “lock-on” is a classical phe-
nomenon that is observed in the wake of bluff bodies and refers to the situation where the
frequency of vortex shedding in the wake synchronizes with or locks on to the frequency
of an imposed perturbation. The perturbation could be imposed through pulsation of the
incoming flow [16] or by free [30] or forced vibration [26] of the bluff body immersed
in a steady oncoming flow. In particular, vortex-shedding lock-on past a transversely os-
cillating cylinder has been studied extensively and is a good benchmark case to validate
the current methodology. Here we have simulated flow past a cylinder at Re= 200 under-
going sinusoidal transverse oscillation over a range of amplitudes and frequencies, and a
direct comparison of the computed results with the experiments of Koopmann [26] and
simulations of Meneghini and Bearman [29] is made.

The computational domain and grid used for the current simulations are shown in Fig. 12.
All lengths here have been normalized by the cylinder diameterD. As can be seen in Fig. 12,
a relatively large (30× 30) computational domain size is used for the current simulation
and the mean location of the cylinder center (xo, yo) is (10, 15) relative to the left bottom
corner of the domain. A uniform free stream velocityU∞ is prescribed on the inflow
(left) and top and bottom boundaries and a convective boundary condition employed at
the exit (right) boundary. The cylinder is oscillated sinusoidally such that the location
of its center (xc, yc) is given byxc(t) = xo; yc(t) = yo + Asin(2π f f t), wheret is the
time nondimensionalized byD/U∞ and A and f f are the nondimensional amplitude and
frequency of the oscillation, respectively. As shown in Fig. 12, a nonuniform mesh is used
in the simulation wherein enhanced resolution is provided in the cylinder vicinity and in
the wake. In the vertical direction, enhanced resolution is provided up to three diameters on
either side of the nominal cylinder location, which is adequate to cover the near wake for
all the oscillation amplitudes studied here. The cylinder is immersed and oscillates through
the fixed, nonuniform, Cartesian mesh.

FIG. 12. Nonuniform mesh used in the simulations. Only every other grid line is shown in both directions.
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As a first step, flow past a stationary circular cylinder at Re= 200 has been simulated. The
flow at this Reynolds number exhibits classical Karman vortex shedding and the current
simulation has been continued for about 40 shedding cycles beyond the point where it
reaches a stationary state. The vortex-shedding frequency was computed from the variation
of the velocity components in the near wake and based on this, a nondimensional vortex
shedding frequency of (or Strouhal number)f0 = 0.198 was obtained. This value matches
well with the experiments of Williamson [57], who obtained a Strouhal number of 0.197.
Furthermore, the average value of the computed drag coefficient was 1.38 and this matches
well with the numerically calculated value in Brazaet al. [8]. The flowfield from this
stationary cylinder simulation was used as the initial condition for all oscillating cylinder
simulations.

In the current study, two sequences of simulations have been carried out at fixed am-
plitudes (A) of 0.1 and 0.2 and the frequency has been varied systematically over a range
around the natural vortex shedding frequencyf0. Each of these simulations is integrated
in time for about 200 nondimensional time units, which is sufficient to reach a stationary
state. Subsequently, the equations are integrated further for about 200D/U∞ and the vortex
shedding frequency is determined by computing the frequency spectra of the velocity fluc-
tuation in the near wake over this period of time. The solid line in Fig. 13a shows the vortex
shedding lock-on region in the space defined by the oscillation frequency (x-axis) and am-
plitude (y-axis), as determined experimentally by Koopmann [26] for Re= 200. According
to this figure, lock-on is observed for amplitudes higher than 0.05 and the frequency range
over which lock-on occurs increases with oscillation amplitude.

Figure 13b shows the variation of the vortex shedding frequency in the wake of the cylin-
der for A = 0.1 for a range of cylinder oscillation frequencies. The horizontal line in the
plot corresponds to the natural shedding frequency and the dashed inclined line represents
the situation of lock-on where the shedding frequency matches the oscillation frequency.
Our simulations indicate that vortex shedding lock-on occurs for oscillation frequencies

FIG. 13. (a) Plot of the lock-in range determined by Koopman [26] shown by the solid lines. Results from
current simulations are also plotted. Filled squares indicate lock-on, while open squares indicate that lock-on did
not result. (b) Variation of vortex shedding frequency with forcing frequency forA= 0.10. Dashed line indicates
lock-on and the horizontal line indicates the natural vortex shedding frequency of 0.198. The filled squares are the
results from the calculations.
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FIG. 14. Contour plot of spanwise vorticity showing the shedding of three vortices per shedding cycle for
A= 0.33 and a forcing frequency of 0.15872.

of 0.95f0 and 1.05f0. As the oscillation frequency is decreased below 0.95f0, the vortex
shedding decreases monotonically and approaches the natural shedding frequency. A some-
what different behavior is observed as the frequency is increased beyond 1.05f0. We observe
that as the frequency is increased, the vortex shedding frequency rapidly drops to a value
below the natural shedding frequency and then approaches this value as the oscillation
frequency is increased further. A similar behavior in the frequency has been observed by
Stansby [40]. The results of our simulations are superposed on the plot in Fig. 13a and we
find that the lock-on behavior predicted in our simulations is in line with the experiments
of Koopmann [26]. Four simulations have also been carried out withA = 0.2. The results
of these simulations have also been plotted in Fig. 13a and are also found to be in line with
the experiments.

Finally, one simulation has been carried out withA= 0.33 and a forcing frequency of
0.15872. Meneghini and Bearman [29] have simulated this flow using a vortex method and
have found that for these parameters, three vortices are shed in the wake for each shedding
cycle. Figure 14 shows a contour plot of the spanwise vorticity obtained from our simulation
at one time instant and we also observe two clockwise and one anti-clockwise vortices
being shed per cycle of the cylinder oscillation. Thus, the current simulations confirm the
experimental observations of Koopmann [26] and also match the computational results of
Meneghini and Bearman [29], thereby providing further validation of the current simulation
methodology.

3.5. Diaphragm-Driven Micropump

To demonstrate the ability of the method to handle flows with multiple moving bound-
aries, the final configuration that we have chosen is that of a diaphragm-driven micropump.
Figure 15 shows the geometry of the micropump. The pump is driven by the diaphragm,
which oscillates sinusoidally in the vertical direction. The directionality of the flow through
the pump is controlled by the two valves, which open and close in concert with the os-
cillating diaphragm. In real applications [60], the diaphragm is usually activated through
electrostatic forcing and the valves are driven by the hydrodynamic force produced in the
pump chamber due to the diaphragm oscillation. However, in the current computational
model, since the objective is to demonstrate the capabilities of the method for complex
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FIG. 15. Schematic of the micropump configuration simulated in the current study.

moving boundary cases, the valves are made to move with a prescribed motion. The se-
quence of valve motion is chosen so that fluid primarily enters the pump chamber from
the left orifice and exits from the right. The inflow and outflow chamber are separated by a
wall and a soft boundary condition is applied at the lower computational boundary, which
allows inflow or outflow. This flow contains complex stationary as well as multiple moving
boundaries. Such a configuration would pose a challenge to any structured or unstructured,
body-conformal Lagrangian method and serves to demonstrate the capabilities of the cur-
rent method. The current simulation of the micropump has been carried out on a uniform
200× 224 (x × y) Cartesian mesh. The length, velocity, and time scale of the flow are
chosen to be the diaphragm length, maximum diaphragm velocity, and time period of the
diaphragm oscillation, respectively. Based on these, the Strouhal and Reynolds numbers
chosen for the current simulation are 1.0 and 100, respectively. The time step size is such
that it requires 2000 time steps to complete one cycle. The simulation is carried out until
a stationary state is obtained and the results presented here correspond to this stationary
state.

Figure 16 shows a sequence of four plots over one pumping cycle. Figure 16a corre-
sponds to the maximum expulsion phase in the cycle. At this phase, the diaphragm is in
a neutral position but moving down with its maximum velocity. The valve timing is cho-
sen so that the left valve is closed and the right valve is fully open. This allows most
of the flow to exit the pump chamber from the right exit and this is clearly shown by
the velocity vectors. The pressure contours also show that a high pressure is created in-
side the pump chamber due to the motion of the diaphragm. Figure 16b shows the next
phase in the pumping cycle where the diaphragm has reached its lowest position and is
about to initiate its upward motion. Both the valves are open halfway and this allows
flow through both of the orifices. The spanwise vorticity contours are plotted, showing
the complex structure of the flow both inside the pump chamber and at the inlet and exit
chambers. Figure 16c shows the flow at the maximum ingestion phase of the cycle where
the left valve is fully open and right is closed. Finally, Figure 16d corresponds to the phase
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FIG. 16. Flow in a diaphragm-driven micropump. The plots show pressure contours, vorticity contours, and
velocity vectors at four phases in the pumping cycle. Dark shades correspond to high pressure and clockwise vor-
ticity, whereas lighter shades correspond to low pressure and counterclockwise vorticity. (a) Maximum expulsion
phase. Velocity vectors and pressure contours are shown. (b) Minimum chamber volume phase. Velocity vectors
and vorticity contours are shown. (c) Maximum ingestion phase. Velocity vectors and pressure contours are shown.
(d) Maximum chamber volume phase. Velocity vectors and vorticity contours are shown.

where the diaphragm is fully deformed upward and the both valves are halfway open.
Large-scale vortical structures are formed at this phase due to flow separation on the left
valve.

It is worth pointing out that this simulation has been carried out on a desktop DEC
Alpha workstation equipped with a 533-MHz, 21164 processor. On average, the simulation
requires 8.5 CPU seconds per time step, which translates to 4.7 CPU hours per pumping
cycle. Thus, an entire simulation covering about 10 pumping cycles can be completed in
about 2 days.
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4. SUMMARY

A method for simulating flow around complex moving boundaries on Cartesian grids has
been presented. The advantage of the method is that since the body motion is independent of
the mesh, problems associated with mesh reconfiguration and motion are circumvented. One
key aspect of the current method is that the moving immersed boundary is represented as a
sharp interface and this makes the method well suited to convection-dominated problems.
The fractional-step method has been reformulated in the context of the current Eulerian–
Lagrangian approach; details of this have also been discussed. A unique problem that arises
in these fixed grid, sharp interface methods is the temporal discretization of the governing
equations in the so-called freshly cleared cells. These are cells which were in the solid at
one time step but emerge into the fluid at the next. A consistent and systematic remedy for
such cells has been presented.

The convergence of a conventional line-SOR iterative solver has been accelerated by
using a modified multigrid algorithm that appropriately accounts for the presence of the
sharp, immersed boundary. In this method, a volume-fraction-type approach is applied for
restriction, prolongation, and smoothing at the coarser levels and this removes any need for
explicit reconstruction of the immersed boundary on the coarse grids levels. The perfor-
mance of the multigrid vis-`a-vis a single grid-level LSOR has been shown in the immersed
boundary cases to be comparable to that for the method without immersed boundaries. Fur-
thermore, the multigrid method has been shown to perform well for increasing complexity
of the geometry caused by multiple boundaries embedded in the domain. A consequence of
this is that the boundary motion does not lead to a significant increase in the required CPU
time.

The solver is used to simulate two problems that have reliable experimental data for
comparison. The first problem, namely the flow in a channel with a moving indentation
in one wall, serves as a benchmark for techniques that simulate the interaction of moving
solid boundaries with viscous, incompressible fluids. It is found that our computed results
match very well the experimental and numerical data of Pedley and co-workers [34, 38]. In
particular, the propagation speed of the eddies and the time and location of their breakup
into smaller eddies are predicted correctly. The second case used for validation is flow past
a cylinder oscillating transversely in a freestream. Simulations have been carried out over
a range of oscillation frequencies and amplitudes and the frequency–amplitude envelope
where vortex-shedding lock-on is observed matches well with the experiments of Koopman
[26]. As a demonstration of the flexibility and efficiency of the method, flow has also been
simulated in a model of a diaphragm-driven micropump containing complex stationary as
well as moving immersed boundaries.
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